

www.spiritDSP.com Copyright © 2011 SPIRIT

SPIRIT Loudness control

User's Guide
Version 1.0

October, 2010

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 2 of 13

Copyright Information
© 2011, SPIRIT. All rights reserved.

This document is protected by copyright. No part of this document may be reproduced in any form by any
means without prior written authorization of SPIRIT.

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 3 of 13

Read this first

The document describes Loudness control software interface, contains flow-charts and testing
procedures description. Document contains examples of the algorithm integration and usage.

To read this document you are not required to have any special knowledge. However, prior experience
with C-programming is desirable.

Loudness control is an algorithm for a distortion compensation which is caused by linear signal scaling
(amplification).

The document includes Loudness control algorithm overview, recommendations on the algorithm
applications, description of the interface and testing procedure.

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 4 of 13

Contents

1. INTRODUCTION ... 5

1.1. Product overview ... 5

1.2. Related products ... 5

1.3. Document Overview .. 5

2. FUNCTIONAL DESCRIPTION .. 6

2.1. Algorithm overview .. 6

2.2. Features and recommendations on loudness control usage .. 8

3. API DESCRIPTION ... 9

3.1. Integration flow .. 9

3.2. Predefined constants ... 9

3.3. TSpiritLdCtrl .. 9

3.4. TSpiritLdCtrl_Prms .. 9

3.5. SpiritLdCtrl_Init () .. 10

3.6. SpiritLdCtrl_Reset () .. 10

3.7. SpiritLdCtrl_SetPrms () ... 11

3.8. SpiritLdCtrl_GetPrms () ... 11

3.9. SpiritLdCtrl_Apply () .. 12

3.10. Error codes .. 12

3.11. Application example .. 13

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 5 of 13

1. Introduction

The purpose of this document is to describe API, integration process and test procedures of Loudness
control software.

1.1. Product overview

The loudness control software modifies signal before amplification in order to preserve perceptual signal
loudness. Modification is performed by 2

nd
 order low-pass shelving filter which parameters depended on

chosen amplification gain. The algorithm operates independently on the "frame by frame" basis. The frame
length is a user-defined parameter.

Specification of the loudness control software product is presented in Table Table 1.

Algorithm Serial connection of shelving (1
st
 order) and peaking (2

nd
 order) filters.

Channels number 1,2

Frame size Arbitrary

Algorithmic delay No extra delay, except framing delay.

Sampling rate 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000 Hz

Gain range –36 to +36 dB

Input and output signal format Interleaved, linear 16-bit PCM, little-endian format.

Table 1 Specifications

For more information about other SPIRIT audio processing technologies visit www.spiritDSP.com.

SPIRIT reserves the right to make changes to its products to improve the products’ technical
characteristics without any notice. Customers are advised to obtain the latest version of relevant information
to verify that the data is up-to-date before placing the orders.

SPIRIT warrants performance of its products to current specifications in accordance with SPIRIT's
standard warranty. Testing and other quality control techniques are utilized to the extent deemed necessary
to support this warranty.

1.2. Related products

The loudness control can be efficiently used in conjunction with other products of SPIRIT:

- MPEG-4 AAC Decoder

- MPEG-1 Layer 3 Codec

- Dynamic Range Control

- Sample Rate Converter

- Automatic Gain Control

1.3. Document Overview

This document is organized as follows.

Section 2 explains a functional description of the software.

Section 3 describes software integration flow, descriptions of structures and interface functions.

http://www.spiritdsp.com/

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 6 of 13

2. Functional Description

This section describes loudness control algorithm and provides several recommendations on its usage.

2.1. Algorithm overview

In fact, human does not perceive two sounds with equal magnitude as equal loudness signal. For
example pure tone of 3 kHz perceives much louder that 1 kHz tone. The loudness level can be
approximately calculated for each particular frequency

†
, the unit of measuring is called phon (Ph). It is

followed from definition that two pure tones with equal Ph level perceive as equal loudness signals.
Generally, phon is not only a function of frequency, but also it depended on magnitude (SPL).

Figure 1. Fletcher-Munson equal loudness contour

Now, consider the equal loudness contour dependency on SPL. More precisely, let references SPL is 40
dB and test signals are two pure tones f0 and f1 with magnitude level corresponding to 40 Ph level; listener
can’t determine the difference in their loudness. Amplify test vectors with a given gain. They becomes at a
different loudness level, it means they perceived as different volume signals. This difference can be
expressed in phons:

0),__(),__(00111,0 fdBgaindBAPhfdBgaindBAPhPh ffff

To make 1f with amplitude dBgaindBAf __1 as loud as 0f with amplitude dBgaindBAf __0

we must amplify by:

)__()),,__((1100 dBgaindBAffdBgaindBAPhitudeudnessMagnGetEqualLodB ff

†
 See ISO 226:1987 (E), standardized frequency range [20, 12500] Hz

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 7 of 13

Assumes 0f is fixed at 1kHz, the correction which should be introduced after linear scaling to move

signal to a)__(0 dBgaindBAPh f level is shown on Figure 2.

Figure 2. Loudness level correction curves with 6 Ph step

For a practical use the set of loudness curves is approximated by a number of IIR filters. One 2
nd

 order
shelf-filter for each gain in range --36:36:6 dB is used. Intermediate curves approximated as a linear
combination of neighbor filters.

Figure 3. Loudness Correction Curves Approximation

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 8 of 13

The algorithm processing scheme is depicted below.

Figure 4. Block diagram of the loudness control algorithm

2.2. Features and recommendations on loudness control usage

The loudness control modifies signal loudness according to output gain value that is why this module
should be placed right before the amplifier. Also, default amplification must be defined (system_unity_gain).
If amplifier gain is equal to system_unity_gain, than loudness control module consider output level as
‘normal’ or ‘reference’ and does not modify signal.

Loudness controlMain processing
Amplifier

(analog or digital)

gain/system_unity_gain

output

Figure 5. Loudness control placement

By default, acceptable gain range is [-36, +36] dB. This range may be too wide for most of devices. One
can reduce this range just feeding scaled gain value to loudness control unit. For example, the multiplication
of input gain by 2 constricts acceptable gain range to [-30, 30] dB interval.

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 9 of 13

3. API description

This section describes software implementation and its interface.

3.1. Integration flow

In order to integrate the algorithm into a user's framework, the user should:

 Initialize the software using SpiritLdCtrl_Init() function.

 Set run-time parameters using SpiritLdCtrl_SetPrms() function.

 Feed each new block of input data to SpiritLdCtrl_Apply () function.

3.2. Predefined constants

SPIRIT_LDCTRL_PERSIST_SIZE_IN_BYTES Persistent memory size in bytes.

SPIRIT_LDCTRL_MAX_CH Maximal number of bands.

SPIRIT_LDCTRL_GAIN_Q_BITS Maximal number of bands.

SPIRIT_LDCTRL_GAIN_MAX Maximal gain value

SPIRIT_LDCTRL_GAIN_MIN Minimal gain value

3.3. TSpiritLdCtrl

Syntax

typedef void TSpiritLdCtrl;

Remarks

Alias of the persistent memory buffer. Only a pointer on this type has sense; all API functions expect it
points to a 4 bytes aligned memory region.

3.4. TSpiritLdCtrl_Prms

Syntax

typedef struct {

 int gainQ8;

} TSpiritLdCtrl_Prms;

Members

gainQ8 Amplifier gain in Q8 format in range [SPIRIT_LDCTRL_GAIN_MIN,
SPIRIT_LDCTRL_GAIN_MAX]

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 10 of 13

Remarks

This structure carries run-time software parameters. Note that unity gain value in Q8 format is equal to
(1<< SPIRIT_LDCTRL_GAIN_Q_BITS).

3.5. SpiritLdCtrl_Init ()

Syntax

int SpiritLdCtrl_Init (

 const TSpiritLdCtrl *ld,

 unsigned long sampleRateHz

);

Parameters

ld Pointer to persistent memory buffer.

sampleRateHz Sampling rate in Hz. Must be positive integer number.

Return value

Error code.

Remarks

This function initializes loudness control persistent memory buffer and resets filters delay.

3.6. SpiritLdCtrl_Reset ()

Syntax

int SpiritLdCtrl_Reset (

 const TSpiritLdCtrl *ld

);

Parameters

ld Pointer to initialized persistent memory buffer.

Return value

Error code.

Remarks

This function resets loudness control state:

- Set filter delay to zero

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 11 of 13

- Setup unity gain value (setup filter corresponding to unity gain)

3.7. SpiritLdCtrl_SetPrms ()

Syntax

int SpiritLdCtrl_SetPrms(

 TSpiritLdCtrl *ld,

 const TSpiritLdCtrl_Prms *prms

);

Parameters

ld Pointer to initialized persistent memory buffer.

prms Initialization parameters.

Return value

Error code.

Remarks

This function can be invoked in run-time. It is recommended to receive current parameters first and then
setup new. The proper call sequence is the following:

TSpiritLdCtrl_Prms prms;

SpiritLdCtrl_SetPrms(obj, &prms); // get current parameters

prms.xxx = xxx; // modify

prms.yyy = yyy;

SpiritLdCtrl_GetPrms(obj, &prms); // set new parameters

Note, no error returned in gain value falls out of the range [SPIRIT_LDCTRL_GAIN_MIN,
SPIRIT_LDCTRL_GAIN_MAX]. Instead, gain is limited to fit the range.

3.8. SpiritLdCtrl_GetPrms ()

Syntax

int SpiritLdCtrl_GetPrms (

 const TSpiritLdCtrl *ld,

 TSpiritLdCtrl_Prms *prms

);

Parameters

ld Pointer to initialized persistent memory buffer.

prms Loudness control parameters storage.

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 12 of 13

Return value

Error code.

Remarks

This function returns actual loudness control parameters.

3.9. SpiritLdCtrl_Apply ()

Syntax

int SpiritLdCtrl_Apply (

 TSpiritLdCtrl *ld,

 int nChannels,

 short *pcm,

 int nSamplesPerCh,

 void *scratch,

);

Parameters

ld Pointer to initialized persistent memory buffer.

nChannels Channel number in range [1, SPIRIT_LDCTRL_MAX_CH].

pcm Input/output PCM buffer.

nSamplesPerCh Number of input frame samples per channel.

scratch Pointer to scratch memory buffer.

Return value

Error code.

Remarks

This function applies shelving filter to input PCM data based on initialization parameters.

Note, input gain only defines particular low-pass filter, but not applied to a signal. Gain transition (filter
switching) performed softly. Full transition executed with a speed of 40dB/sec. For example, gain change
from 0 db to 20 dB (gain x1 to x10) would take .5 second. The software requires two times more
computational power during gain transition period because of two filters operate simultaneously.

3.10. Error codes

Enumerated name Description

SPIRIT_LDCTRL_S_OK Operation completed successfully.

SPIRIT_LDCTRL_E_INVALIDARG Bad arguments for a function.

SPIRIT_LDCTRL_E_SAMPLERATE Bad sample rate.

 SPIRIT Loudness control

www.spiritDSP.com Copyright © 2011 SPIRIT Page 13 of 13

Enumerated name Description

SPIRIT_LDCTRL_E_CH Bad number of channels.

SPIRIT_LDCTRL_E_BADALIGN_PERSIST Bad persistent memory alignment.

SPIRIT_LDCTRL_E_BADALIGN_SCRATCH Bad scratch memory alignment.

3.11. Application example

This is an example of loudness control usage; it can be linked with loudness control library and run.

 #include <stdio.h>

#include "spiritLdCtrl.h"

static long ld[SPIRIT_LDCTRL_PERSIST_SIZE_IN_BYTES/4];

#define PCM_BUFFER_SIZE_IN_SAMPLES 256

static short bufInOut[PCM_BUFFER_SIZE_IN_SAMPLES];

void Process_SingleFile (

 const char *szInputName,

 const char *szOutputName

)

{

 FILE *pFileIn = NULL, *pFileOut = NULL;

 unsigned long lHz = 48000;

 unsigned int nCh = 2;

 pFileIn = fopen(szInputName, "rb");

 pFileOut = fopen(szOutputName, "wb");

 // Initialize

 SpiritLdCtrl_Init(ld, lHz);

 // Setup parameters

 {

 TSpiritLdCtrl_Prms prms;

 SpiritLdCtrl_GetPrms(ld, &prms);

 prms.gainQ8 = 20<<8;

 SpiritLdCtrl_SetPrms(ld, &prms);

 }

 while(1) {

 int nSamples = fread(bufInOut, sizeof(short), PCM_BUFFER_SIZE_IN_SAMPLES, pFileIn);

 int nSamplesPerCh = nSamples >> (nCh==2 ?1:0);

 if(nSamplesPerCh == 0) {

 break;

 }

 // Run loudness control

 SpiritLdCtrl_Apply(ld, nCh, bufInOut, nSamplesPerCh);

 // Write output data

 fwrite(bufInOut, sizeof(short), nSamplesPerCh*nCh, pFileOut);

 }

 fclose(pFileIn);

 fclose(pFileOut);

}

	Introduction
	Product overview
	Related products
	Document Overview

	Functional Description
	Algorithm overview
	Features and recommendations on loudness control usage

	API description
	Integration flow
	Predefined constants
	TSpiritLdCtrl
	TSpiritLdCtrl_Prms
	SpiritLdCtrl_Init ()
	SpiritLdCtrl_Reset ()
	SpiritLdCtrl_SetPrms ()
	SpiritLdCtrl_GetPrms ()
	SpiritLdCtrl_Apply ()
	Error codes
	Application example

