SPIRIT DSP €%

Embedded Voice Experience

SPIRIT Mixer
User's Guide

Version 1.0
October, 2010

www.spiritDSP.com Copyright © 2011 SPIRIT

SPIRIT DSP €%

Embedded Voice Experience

SPIRIT Mixer

Copyright Information

© 2011, SPIRIT. All rights reserved.

This document is protected by copyright. No part of this document may be reproduced in any form by any
means without prior written authorization of SPIRIT.

www.spiritDSP.com Copyright © 2011 SPIRIT Page 2 of 11

SPIRIT DSP €%

Embedded Voice Experience

SPIRIT Mixer

Read this first

The document describes mixer software modules and detailed software interface definitions, contains
flow-charts and testing procedures description. Document contains examples of the software integration and
usage.

To read this document you are not required to have any special knowledge. However, prior experience
with C-programming is desirable.

The mixer software performs weighted time-domain mixing of two PCM sources. It can be used for
implementing cross-fade functionality as well as for overlapping two audio sources.

The document includes parametric mixer algorithm overview, recommendations on the software
applications, API description, and testing procedure.

www.spiritDSP.com Copyright © 2011 SPIRIT Page 3 of 11

SPIRIT DSP €%

Embedded Voice Experience

SPIRIT Mixer

Contents
1. INTRODUGCTION ... ittt e ettt ettt e e sttt e e s aata e e e s sateeeesassteeesansteeesansaeeesanneeeas 5
1.1, PrOAUCE OVEIVIEWottt e et e e e e e e et e e e e e e e e nabeeeeeae s 5
L2 o == 1 (=T oo Yo [o £ R 5
1.3, DOCUMENT OVEIVIEWeeiiiiiiiiee ettt ettt e e sttt e e e st e e e e st te e e e s nbae e e e snbaeeeesnbeeeeeannaeeeennnes 5
2. FUNCTIONAL DESCRIPTIONciiiiiiiiieiiiiit ettt e sttt e e atee e s st e e e stae e s snraeeeennraeaeennnes 6
2.1, AlGOTItRM OVEIVIEW ...ttt e et e e e e e e e st e e e e e aabee e e e aanee 6
2.1.1. Overall MIXEr SCREMEuiiiiiiiii et et e e e e e snbee e e e nnes 6
2.2. Features and recommendations ON MIXEr USAJE........uueiiiiuriieiiiiiie et e 7
A IS T [(o T =Y SRR 7
A O o 11 = o SRR 7
3. F N I] S 0 2 1 T] ST 8
3.1, INEEGration fIOWcoo i e 8
3.2, Predefined CONSTANTS........ccuiiiiiiii et e e e nbae e e e nrae e e e eneee 8
R TR T 1T o 1411111 PSPPI 8
T T IS T o141 1Y 10T o .41 OO PP PPPRRP 8
3.5, SPIMtMIXEr_SEtPIMIS() ...eii it 9
3.6, SPIMtMIXEr_GEIPIMIS().eeeieiiiiiie ittt e e e e e e e e et e e e e bee e e e nnbee e e e anneeeeeanees 9
RIS o1 111V T Y o] o] ISR 10
G T T =ty o i oo o L= SRR 10
3.9. Application €XamMPIEcooooiiiiiiiiieeeeeeee e 11

www.spiritDSP.com Copyright © 2011 SPIRIT Page 4 of 11

SPIRIT DSP €%

Embedded Voice Experience

SPIRIT Mixer

1. Introduction

The purpose of this document is to describe API, integration process and test procedures of mixer
software.

1.1. Product overview

The mixer software performs linear averaging of data coming two sources with up to 2 channels in each.
Algorithm operates on "frame by frame" basis. The frame length is a user-defined parameter.

Specification of the mixer software product is presented in Table 1.

Algorithm Weighted sum of two signals, with dynamically changing weights.
Channels number 1,2

Maximum Frame size Arbitrary

Algorithmic delay No extra delay, except framing delay.

Signal gain range -inf-0dB

Input and output signal format Interleaved, linear 16-bit PCM, little-endian format.

Runtime adjustment Gain value, transition length

Table 1. Specifications

For more information about other SPIRIT audio processing technologies visit www.spiritDSP.com

SPIRIT reserves the right to make changes to its products to improve the products’ technical
characteristics without any notice. Customers are advised to obtain the latest version of relevant information
to verify that the data is up-to-date before placing the orders.

SPIRIT warrants performance of its products to current specifications in accordance with SPIRIT's
standard warranty. Testing and other quality control techniques are utilized to the extent deemed necessary
to support this warranty.

1.2. Related products

The software can be efficiently used in conjunction with other products of SPIRIT:
- MPEG-4 AAC Decoder
- MPEG-1 Layer 3 Codec
- Dynamic Range Control
- Sample Rate Converter
- Automatic Gain Control
Since data format is very common, it can be easily interfaced with other Third Party products.

1.3. Document Overview
This document is organized as follows.
Section 2 explains a functional description of the software.
Section 3 describes integration flow, descriptions of structures and interface functions.

www.spiritDSP.com Copyright © 2011 SPIRIT Page 5 of 11

http://www.spiritdsp.com/

SPIRIT DSP €%

Embedded Voice Experience

SPIRIT Mixer

2. Functional Description

This section describes mixer algorithm and provides several recommendations on mixer usage.

2.1. Algorithm overview

2.1.1. Overall mixer scheme

The mixer consists of two controlled amplifiers which process input PCM data stream with Gain and 1-
Gain multipliers as depicted in Figure 1. Gain value is linearly increased or decreased toward the user
defined value during user the user defined transition period. Output signal is obtained by adding results of
two amplifiers. Source 1 and Source 2 can be one-channel or dual-channel signals.

Source 1 - Gain

A

Gain == yes

GainTarget GainTarget

b

Update Gain

4
Source 2 "En

Figure 1. Block diagram of mixer algorithm

The mixer performs the following operation:
SDHE = E{Sl + [1 - Ef:|5= s

where 21and 31 - input PCM samples, & - time varying gain value, Sout - output PCM sample.

www.spiritDSP.com Copyright © 2011 SPIRIT Page 6 of 11

SPIRIT DSP €%

Embedded Voice Experience

SPIRIT Mixer

2.2. Features and recommendations on mixer usage

2.2.1. Side tones

Figure 2 demonstrates an example of the mixer software usage where mixer is used to provide audible
key press feedback while playing audio. When user presses a key, while playing music, the tone generator
produces tonal signal. The tone added to music with the mixer, such that user can hear it on background,

without music interrupt.

Audio Data

Mixer >

‘ Headphones

Tone
generator

3

Keypad

—/

Mobile Device

Figure 2. Side tones playback using mixer

2.2.2. Cross-fade

Figure 3 demonstrates example of the mixer software usage when implementing smooth transition
between two songs (“cross-fade”). The “cross-fade” is a technique of smooth transition from one song to
another. Old song is gradually reduced in volume (“fade-out”), while new song is gradually increased in
volume (“fade-in”). Both songs are mixed and reproduced simultaneously. The Mixer software can be used
for both mixing and gradual volume change, and is sufficient to implement cross-fade effect.

P —
AudioCD

song 1 -
Mixer @
e

*>—

AudioCD
song 2

Figure 3. Cross-fade between two songs

www.spiritDSP.com Copyright © 2011 SPIRIT Page 7 of 11

SPIRIT DSP €%

Embedded Voice Experience SPIRIT Mixer
3. API description
This section describes software implementation and its interface.
3.1. Integration flow
In order to integrate the mixer into user’'s framework, the user should:
e Set mixer parameters using SpiritMixer_SetPrms() function.
e Feed each new block of input data to SpiritMixer_Apply() function.
3.2. Predefined constants
SPIRIT_MIXER_PERSIST_SIZE IN_BYTES Persistent memory size in bytes.
SPIRIT_MIXER_MAX_CH Maximal channel number.
SPIRIT_MIXER_MAX_GAIN_Q15 Maximal gain value (in Q15 format).

3.3. TSpiritMixer

Syntax

typedef void TSpiritMixer;

Remarks

Alias of the persistent memory buffer. Only a pointer on this type has sense; all API functions expect it
points to a 4 bytes aligned memory region.

3.4. TSpiritMixer_Prms

Syntax

typedef struct {
short nChannels;
short gainQl5;
long translen;

} TSpiritMixer Prms;

Members

nChannels Number of channels in source material, 1 or 2.
gainQ15 Desired gain in Q15.

transLen Gain transition length in samples.

www.spiritDSP.com Copyright © 2011 SPIRIT Page 8 of 11

SPIRIT DSP €%

Embedded Voice Experience

Remarks

This structure carries used for reading and setup mixer parameters using SpiritMixer_SetPrms() and
SpiritMixer_GetPrms(). The gainQ15 is applied to first source signal while the second is amplified by

(1915 - gainQ15) gain.
Both of source signals must have the same number of channels.

3.5. SpiritMixer_SetPrms()

Syntax

int SpiritMixer SetPrms (
TSpiritMixer *mx,
const TSpiritMixer Prms *prms

) 7

Parameters
mx Pointer to initialized persistent memory buffer.
prms Initialization parameters.

Return value

Error code.

Remarks

This function can be invoked in run-time. It is recommended to receive current parameters first and then
setup new. The proper call sequence is the following:

TSpiritMixer Prms prms;
SpiritMixer SetPrms (obj, &prms); // get current parameters

PIms.XXX = XXX; // modify
prms.yyy = YYY/7

SpiritMixer SetPrms (obj, &prms); // set new parameters

3.6. SpiritMixer_GetPrms()

Syntax

int SpiritMixer GetPrms (
const TSpiritMixer *mx,
TSpiritMixer Prms *prms

) 7

Parameters
mx Pointer to initialized persistent memory buffer.
prms Mixer parameters storage.

www.spiritDSP.com Copyright © 2011 SPIRIT Page 9 of 11

SPIRIT Mixer

SPIRIT DSP €%

Embedded Voice Experience

Return value

Error code.

Remarks

This function returns actual mixer parameters.

3.7. SpiritMixer_Apply()

Syntax

int SpiritMixer Apply(
TSpiritMixer *mx,
const short *inO,
const short *inl,
int nSamplesPerCh,
short *out

) 7

Parameters

mx Pointer to initialized persistent memory buffer.
in0 First source PCM buffer.

in1 Second source PCM buffer.

nSamplesPerCh Number of input frame samples per channel.
out Output PCM buffer.

Return value

Error code.

Remarks

This function process input PCM data with given parameters (gain and transition length). The output
buffer has the same length and structure as the input. It is allowed the origin of input and output buffers
coincide.

3.8. Error codes

Enumerated name Description
SPIRIT MIXER S OK Operation completed successfully.
SPIRIT MIXER E INVALIDARG Bad arguments for a function.
SPIRIT MIXER E CH Bad number of channels.
SPIRIT MIXER E GAIN Bad gain value.
SPIRIT MIXER E BADALIGN PERSIST Bad persistent memory alignment.

www.spiritDSP.com Copyright © 2011 SPIRIT Page 10 of 11

SPIRIT DSP €9

Embedded Voice Experience

SPIRIT Mixer

3.9. Application example

This is an example of Mixer utility usage; it can be linked with mixer library and run.

#include <stdio.h>
#include "spiritMixer.h"

static long mixer [SPIRIT MIXER PERSIST SIZE IN BYTES/4];

#define PCM_BUFFER SIZE IN SAMPLES 256

static short bufIn0[PCM BUFFER _SIZE IN SAMPLES];
static short bufInl[PCM BUFFER SIZE IN SAMPLES];
static short bufOut[PCM BUFFER SIZE_ IN_ SAMPLES];

void Process SingleFile (
const char *szInputNamel,
const char *szInputName2,
const char *szOutputName,
short gainStart,
short gainEnd,

long

transitionLen

FILE *pFileInl = fopen (szInputNamel, "rb");
FILE *pFileIn2 = fopen (szInputName2, "rb");
FILE *pFileOut = fopen (szOutputName, "wb");
unsigned long 1Hz = 48000;

unsigned int nCh = 2;

TSpiritMixer Prms prms;

// Initialize
SpiritMixer Init (mixer);

// Set initial params

prms.nChannels = nCh;
prms.gainQl15 = gainStart;
prms.transLen = 0;

SpiritMixer SetPrms (mixer, &prms) ;

// Set final gain and transition length

prms.nChannels = nCh;
prms.gainQl5 = gainEnd;
prms.translen = transitionLen;

SpiritMixer SetPrms (mixer, &prms) ;

while (1) {
int nSamples(0 = fread(bufIn0, sizeof (short), PCM BUFFER SIZE IN SAMPLES, pFilelInl);
int nSamplesl = fread(bufInl, sizeof (short), PCM BUFFER SIZE IN SAMPLES, pFilelIn2);

}

int nSamplesPerCh = nSamples0 < nSamplesl ? nSamples0 : nSamplesl;
nSamplesPerCh >>= (nCh==2 ? 1:0);
if (nSamplesPerCh == 0) {

break;

}

// Run mixer
SpiritMixer Apply(mixer, bufIn0O, bufInl, nSamplesPerCh, bufOut);

// Write output data
fwrite (bufOut, sizeof (short), nSamplesPerCh*nCh, pFileOut);

fclose (pFilelInl);
fclose (pFilelIn2);
fclose (pFileOut) ;

www.spiritDSP.com Copyright © 2011 SPIRIT

Page 11 of 11

	Introduction
	Product overview
	Related products
	Document Overview

	Functional Description
	Algorithm overview
	Overall mixer scheme

	Features and recommendations on mixer usage
	Side tones
	Cross-fade

	API description
	Integration flow
	Predefined constants
	TSpiritMixer
	TSpiritMixer_Prms
	SpiritMixer_SetPrms()
	SpiritMixer_GetPrms()
	SpiritMixer_Apply()
	Error codes
	Application example

