

LPWAN Design & Test Methods eMTC & NB-IoT

January, 2018

© Quectel Wireless Solutions Co., Ltd. All rights reserved

Quectel LPWAN Modules

LTE Cat NB1

LTE Cat NB1 & M1 + EGPRS

LTE Cat NB1

Quectel LPWAN Modules

LTE Cat NB1

LTE Cat NB1 & M1 + EGPRS

LTE Cat NB1

BG96 module overview

- LTE Cat M1 & Cat NB1 + EGPRS
- Multiband: B1/ B2/ B3/ B4/ B5/ B8/ B12/ B13/ B18/ B19/ B20/ B26/ B28
- IP/UDP/TCP
- ThreadX/QAPI/LwM2M/MQTT
- Integrated GNSS with LNA
- Qualcomm MDM9206 chip inside
- Temperature range: -40°C.. +85°C
- LGA package
- Dimensions: 19.9 x 23.6 x 2.2 mm

BG96 power consumption

KEYSIGHT DC Power Analyzer N6705C

BG96 power consumption - Cat M1

BG96 power consumption - Cat M1

Description	Conditions	Typical	Max	Unit
Power Saving Mode	PSM	10		uA
Standby	DRX=1.28s	1.9* / 16		mA
	eDRX=20.48s	1.3* / 15		mA
	23dBm @Instrument	190	447	mA
Active	10dBm @Instrument	130		mA
	0dBm @Instrument	124		mA
	DataTransfer @RealNetwork	95		mA

*Standby state with both USB and UART disconnected

BG96 power consumption - Cat NB1

Description	Conditions	Typical	Max	Unit
Power Saving Mode	PSM	10		uA
Standby	DRX=1.28s	2.3* / 16		mA
Standby	eDRX=20.48s	1.9* / 15		mA
	23dBm @Instrument	78	400	mA
Active	10dBm @Instrument	66	221	mA
	0dBm @Instrument	65	209	mA
	DataTransfer @RealNetwork		203	mA

*Standby state with both USB and UART disconnected

Future proof design compatibility

[4G] - EG91 LTE Cat 1 module

[4G] - BG96 LTE Cat M1 & NB-IoT

[4G] - BC95 LTE Cat NB-IoT

[3G] - UG96 & UG95 UMTS modules

[2G] - M95 GSM/GPRS module

Future proof design compatibility

BG96 design example

		<u> </u>	
P B P	AIN	2	2,
B Ω ₹	2	T A T	
SB 2S	Ł	8 an	2
	A		ANT CHICO
PSM_IND			ANT_GNSS
ADC1			USIM GND
			USIM CLK
I2S_BCLK		U	JSIM_DATA
125_WCLK			USIM_RST
125 D1	USIM_VDD		
USB_VBUS		USIM	PRESENCE
USB_DP			IZC_SDA
USB_DM	Oue	octol	120_300
N CHID	Que		RI
GND	BC.	06	DCD
1	DC	190	RTS
1			CTS
PWRKEY			TXD
			VRAT PR
RESET_N		ISO	VBAT_BB
-) W_DISABLE#		MW W	Torri _00
≿ t	-00	<u>988</u>	
IS EAC		S S S S	
B LE	008	OL AND A	
AP ST AP	ABBBB	83355	

1x USB 2.0

3x UART

2x ADC

2x GPIO

1x (U)SIM

•

•

BG96 interfaces

1x I2S & I2C for codec

NETLIGHT, STATUS

GSM & GNSS Antenna

BG96 interfaces

- Reserve PI matching network
- 50 ohms impedance

BG96 interfaces

- Active antenna power supply
- TVS protection
- Reserve PI matching network
- 50 ohms impedance

BG96 power supply decoupling

BG96 power supply decoupling

- Star layout for VBAT_BB & VBAT_RF
- Smaller capacitors closer to input pin
- Wide trace or power plane connection

BG96 control & status signals

BG96 control & status signals

- PWRKEY for On/Off
- STATUS for power status
- NETLIGHT for network status
- USB_BOOT enable

BG96 SIM interface design

BG96 SIM interface design

- Decoupling capacitor for SIM_VDD
- SIM_CLK/DATA separated by system GND to avoid crosstalk

BG96 connection to external MCU

BG96 connection to external MCU

- AT UART
- GNSS UART
- STATUS, PWRKEY, PSM_IND
- Analog & Digital Sensors
- Different Power Domain

BG96 signal level shifting

BG96 signal level shifting

• Different Power Domain (1.8V)

BG96 design example

BG96 testing with NB-IoT

BG96 EVB kit

BG96 communication layers

UDP Test Server

web: bit.ly/quectel-udp-server

IP: 83.58.228.64*

port: 16666

© Quectel Wireless Solutions | January, 2018 | Page 30

* IP is dynamic, check web link for current allocated IP

NB-IoT Test System Architecture

NB-IoT Test System Architecture

NB-IoT Test System Architecture

Visualize UDP Data

bit.ly/quectel-udp-server

WEETEEE UDP Test Server IP: 83.58.228.64 port: 16666	UDP Active Connections
UDP IP data 109.166.139.83 Willkomen beim Work	data shop NB-IoT

Initial Setup & Configuration

- 1. Enable scrambling, PSM, eDRX
- 2. Set Band, Network, Mode, APN
- 3. Manual Operator Selection
- 4. Check registration/attachment status
- 5. Send/Receive UDP data

Enable Scrambling, PSM, eDRX

//set & store fixed baudrate

AT+IPR=115200;&W

//Enable scrambling, T3412=10min, T3324=2s, eDRX=5.12s

AT+QCFG="nbsibscramble",0

AT+CPSMS=1,,,"00000001","00000001"

AT+CEDRXS=1,5,"0000"

//Reboot the module, power off

AT+QPOWD=1

//then tart module from PWRKEY button

Set Band, Network & Mode

//set band 80=B8(900 MHz), 80000=B20(800 MHz),... see manual

AT+QCFG="band",0,0,80,1

//Set LTE only mode and scan sequence LTE NB1 > LTE M1 > GSM

AT+QCFG="nwscanmode",3,1

AT+QCFG="nwscanseq",030201,1

//Set network operating mode as LTE NB1 only

AT+QCFG="iotopmode",1,1

//Set PS only domain

AT+QCFG="servicedomain",1,1

//Enable full functionality

AT+CFUN=1

//Set APN for PDP context, can be empty ("")

AT+CGDCONT=1,"IP","APN_provided_by_operator"

Check Network Status

//wait 30s for NW registration, then check attachment status

AT+CGATT?

+CGATT:1

//check EPS network registration status (1=home, 5=roaming)

AT+CEREG?

+CEREG:1,xxxx,yyyyy,z

//or

+CEREG:5, xxxx, yyyyy, z

Send/Receive UDP Data

//activate PDP context and create an UDP socket on IP*/port

AT+QIACT=1

AT+QIOPEN=1,0,"UDP","83.58.228.64",16666

//send UDP message encoded as 2 digit HEX
AT+QISENDEX=0,"48656C6C6F20576F726C6421"

+QIURC: "recv",0

//read received UDP message

AT+QIRD=1

+QIRD: 12

48656C6C6F20576F726C6421

//close socket

AT+QICLOSE=0

© Quectel Wireless Solutions | January, 2018 | Page 40

* update 83.58.228.64 with UDP server IP from web link

Visualize UDP Data

bit.ly/quectel-udp-server

WEETEE Build a Smarter World UDP Test Server IP: 83.58.228.64 port: 16666	
UDP	data
IP data	
109.166.139.83 Willkomen beim Work	shop NB-IoT

Thank you!

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China Tel: +86-21-5108 6236 Email: **info@quectel.com** Website: **www.quectel.com**

- in https://www.linkedin.com/company/quectel-wireless-solutions
- f https://www.facebook.com/quectelwireless
- https://twitter.com/Quectel_IoT