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Chapter 1
Introduction to Digital Design with VHDL

The first chapter starts with an introduction to digital systems. The levels of
abstraction commonly used for the description of a digital system are presented.
Each abstraction level includes both a structural description and a behavioral one.
The structural description consists of the components and their interconnections
used for the digital system design, whereas the behavioral description is used for the
representations of the system functionality as a whole. The most important tools in
designing digital systems are the hardware description languages (HDLs). They
allow the system description at a high abstraction level, where no technology
information such as gate level circuit footprints and propagation delays is needed.
Meanwhile, based on the HDL descriptions, the synthesis software tools are able to
generate more detailed representation of the system, at lower abstraction levels.
Considering these abstraction levels, details such as the gate level circuits used by
different development technologies (e.g. FPGA or ASIC) are included in the digital
system description. Once we established how digital systems are described using
different abstraction levels, we proceed to the VHDL language constructs and
semantics used to design digital logic. Examples of VHDL codes are provided
along this chapter so the reader will get familiar on how to design and test the
functionality of digital logic blocks.

1.1 Digital Systems—Introductory Notes

A signal, as referred to in electrical engineering, communications and signal pro-
cessing, represents a function which gives information about specific phenomena
from the physical world. In other words, signals provide information about the
variation in time and space of the physical systems. In mathematical terms, signals
can be defined as continuous-valued or discrete-valued functions which correspond
to the analog or the digital signals, respectively. A digital system is composed of
interconnected modules designed to handle digital (discrete) signals in order to



analyze and describe specific physical phenomena. These modules are most often
based on electronic circuits such as, memories, computing units (e.g. processors),
digital audio-video devices or telecommunication devices. The main advantages of
such digital modules (devices), where information representation is achieved trough
digital signals, are: the reproducibility of information, flexibility, functionality (e.g.
easier to store, transmit and manipulate) and the reduced cost. Taking into account
these advantages, converting the information into a digital signal (i.e. digitization)
has spread to a wide range of applications mainly in the field of computer science,
telecommunication and control systems. A major trend in digital design is to use
hardware description languages to describe the functionality of digital circuits. The
present book is focused in developing digital modules by means of hardware
description language, for both real-time image processing application and efficient
implementations of channel coders and decoders, specific to the field of digital
communication. To understand the methodology for developing digital modules,
basic knowledge of digital circuits and their functionality are mandatory.
Consequently, simple examples are used in the first chapter in order to ease the
reader understanding on the basic concepts of designing digital circuits specific for
a given application. Further on, the next chapters present in detail more complex
digital circuits, called application specific hardware architectures which fulfill a
specific task in a digital system (e.g. real-time edge detection in image processing
systems).

A digital system can be analyzed from different perspectives or views: behav-
ioral view, structural view and physical view [1]. The behavioral view examines the
system at the most abstract level since it does not take into consideration the
internal representation of the system. Practically, it describes the input–output
functionality of the system. The structural view specifies how the system is inter-
nally represented by its components and their interconnections. This is also known
as the diagram of the system. The physical view adds to the system description
detailed information like components size, locations on the board or connection line
paths. The layout of a printed circuit board is a suggestive example for a physical
view of a digital system.

Describing such a complex system using one single process which accounts for
all of the systems’ views is a complex task. A common approach to ease the design
of digital systems is to make use of several levels of simplified models, called
abstraction levels. Before proceeding to the description of the abstraction levels, an
example is given in order to underline the benefits of this approach. Thus, the
process of designing digital logic starts with the behavioral description of the
system to be designed. Building blocks such as, registers, multiplexors, and logic
blocks with their input output signals are interconnected in order to implement the
desired functionality. In this type of description, details such as footprints of the
gate level components (e.g. AND logic gate), propagation path delays or other
physical characteristics of the target device do not affect the implementation. This
description is part of a high abstraction level, where not all the implementation
details are accounted. In case of lower abstraction levels, the description of the same
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digital logic is performed using different building block such as, logic gates and
flip-flops, which leads to a more detailed description of the same digital logic.

1.2 Levels of Abstraction

Due to its complexity, a digital system is described by taking into consideration
several abstractions levels. Each abstraction level is characterized by (1) the
building blocks used to construct the digital system, (2) the representation of the
signals that the building blocks operate with, and (3) the behavioural representation
of the digital logic functionality.

Considering the building blocks used, the levels of abstraction for digital sys-
tems description are [1]:

• Transistor level;
• Gate level;
• Register transfer level (RTL);
• Processor level.

The lowest description level is the transistor level, which includes all the details
for the digital systems implementation on the target device and represents the more
accurate description. The highest level (i.e. processor level) represents a summa-
rized description of the whole digital system, meaning building blocks such as
processors make use of computing units and memories to apply a specific algorithm
(computational steps) on the input data.

It is worth mentioning, each digital system can be seen either through its
structural description (the building blocks used for its description) or through its
behavioural description (behavioural representation of its functionality) [1].
Keeping this in mind, Fig. 1.1 shows both the digital system views and the cor-
responding abstraction levels.

Considering the transistor level, the main building blocks are transistors, resis-
tors, capacitors etc., whereas the signals are represented by time varying voltages.
The behavioural representation and the physical representation are given by dif-
ferential equations and transistor detailed layouts respectively.

Behavioral 
description

Structural 
description

Transistor functions
Boolean equations

RTL specifications

Algorithm

Transistor
Gate, Flip-flops

Registers, ALU, MUX

CPU & Memory

Gate level
RTL

Processor level

Transistor
 level

Fig. 1.1 Digital systems views and their corresponding abstraction levels
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The second abstraction level, namely the gate level, involves simple logic blocks
like logic gates, multiplexers or flip-flop as basic building blocks for digital system
description. The signals are represented as logic values 0 or 1, whereas Boolean
equations are used for behavioral representation.

The RTL abstraction level has building blocks constructed from simple gates
such as arithmetic logic units, multiplexers, comparators or registers. In this case,
the signals are interpreted as specific data types, whereas time representation is
interpreted using number of clock cycles as time unit. The behavioral representation
of the building block from the RTL level is described by finite state machines.

The processor level is characterized by building blocks such as processors,
memory modules, intellectual properties and bus interfaces. The behavioral repre-
sentation at this level of abstraction is performed through a program or algorithm
coded in a conventional programming language.

Up to this point, we have a general view on how the digital systems can be
described. Thus, the next step is to develop digital systems by using a hardware
description language and specific software tools. Developing a digital system
supposes the following design tasks to be fulfilled [1]:

(i) Synthesis
(ii) Physical design
(iii) Verification
(iv) Testing

Synthesis
The synthesis process is a transformation of the system either from a description

in the behavioural domain to a description of the same design in the structural
domain or from a description which makes use of a high-level abstraction to one
which uses a low-level abstraction [1]. The synthesis process can be divided into
several steps [1], presented as follows: high-level synthesis (i.e. transforms an
algorithm into an processor level description with the control and data paths); RTL
level synthesis (i.e. transforms the behavioural description of the RTL level to a
structural implementation using RTL level components like adders, registers,
multiplexers); gate-level (logic) synthesis (i.e. transforms the RTL level description
into a descriptions which uses gate-level components and which have the beha-
vioural representations given by Boolean equations); technology mapping (i.e. the
gate level circuits are build using the cells of the technology used for the imple-
mentation of the digital design under development).

Physical design
The physical design refers to the refinement process between the structural and

physical representations, but also an analysis of the circuit’s electrical character-
istics. The main steps that should be performed are [1]:

• Floor planning—provides a layout at the processor and RT levels; at this step
the system is partitioned into function blocks;

• Placement and routing—provides a layout at the gate-level;
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Verification
The verification process has to determine if the design accomplishes the speci-

fication and the performance required [1].

• Functional verification: check the functionality of the initial design by com-
paring the output obtained with the output desired; converts the initial design to
a gate-level structural representation through the refinement process;

• Performance/Timing verification: the performance is measured by analyzing
some timing constraints like maximal propagation delay or minimal clock fre-
quency; at the RT-level the delay of an input-output path is calculated by
summing the individual components delays; at the gate-level the propagation
delays depend on the components but also on the interconnection wires.

The specific methods of verification for digital designs are:

• Simulation, which examines a system’s functionality and performance without
effectively building it; practically, the simulation constructs a model of the
system but like any model, it involves also limitations (e.g. the simulations does
not necessary illustrate the exact same functionality as the real life circuit).

• Timing analysis, which verifies if the system accomplishes the timing goals, by
calculating the propagation delays on the circuit paths and by determining the
timing parameters;

• Formal verification which is based on mathematical methods for verifying if two
representations of a system have the same functionality.

• Hardware emulation, which implements a prototyping circuit which reproduces
the system’s functionality (e.g. an FPGA circuit may be used to emulate an
ASIC design before its prototyping).

Testing
Testing appears to be easy, since the whole design has already been build.

Nevertheless, the detection of the physical errors during the fabrication process
which affect the functionality of the design is not a trivial task. Thus, considering a
large number of inputs and an increased complexity of the designed system, the
addition of auxiliary circuits and processes as test pattern generation are demanded.

As a concluded remark, the digital systems are analyzed from different per-
spectives (behavioural, structural, physical) and they are represented at different
abstraction levels. Also, the development of a digital system requires several steps
and each step has a very important contribution in constructing a system which
meets the specifications and the desired performance. These steps are: synthesis,
physical design, verification and testing. Certain tasks of the designing process may
be automated, but, the automation process is limited so the digital systems cannot
be designed without the amazing work of the human mind.

1.2 Levels of Abstraction 5



1.3 The VHDL Hardware Description Language

Knowing that a digital signal can be described from different point of views,
perspectives and levels of abstraction we can observe that, the evolution of the
design process, is determined both by human minds and software tools. It is a great
help to have a standard framework, so that information can be exchanged between
peers or software. The common framework is represented by a hardware
description language (HDL). In the next chapter, a hardware description language
will be described in general, so that we get a better picture if its capabilities. The
particular case of a hardware description language is VHDL language. A series of
language constructs and semantics together with VHDL code examples will be
approached to get a closer view of a specific HDL.

1.3.1 Overview of Hardware Description Languages

An HDL is different than any traditional programming language because it’s being
modeled after hardware. It describes a circuit that was already built or that is in its
developing stage. Moreover, with the help of the HDL and synthesis software tools,
the circuit can be modeled with high precision at the desired level of abstraction.
This means it can be described using any type of buildings blocks (e.g. registers,
logic gates or even transistors).

As we already know, there are many programming languages like C, Java,
Python and so on, but neither of those are suitable for modeling hardware due to
their limitations (they are build exclusively to program general purpose processors).
Before the HDL programming languages have been developed, the characteristics
of the common programming languages were studied by the designers in order to
provide the best syntactic constructs and their associated semantics for building
digital logic.

A common programming language is characterized by two features:

• Syntax—syntactic constructs and grammatical rules used to write a program;
• Semantics—the meaning associated with the syntactic constructs.

These two characteristics have definitely been accounted for building the
hardware description languages and, naturally, they are found in any HDL. Other
than these, there are more differences than similarities.

The majority of programming languages are using a sequential process to
describe an algorithm to be used on a classic computer model (for example the C
language). In this way the operations are performed one at a time (i.e. sequentially)
having two important benefits: at abstract level, it helps the human mind to develop
an algorithm one step at a time, whereas at the implementation level, the algorithm
being sequential it suitable for the implementation on the basic computer model
(one instruction at a given time).

6 1 Introduction to Digital Design with VHDL



Digital systems work completely different than the sequential ones, having
smaller modules with input and output ports, which are connected through cus-
tomized wiring. These parts/modules with input and output are commonly known
as black-boxes. Here we can talk about a propagation delay, due to fact that
operations associated with each module are performed concurrently. When signal
changes appear at the inputs, new operations are initiated by the black-box for
which the inputs changed. When the process is completed, there will be values
generated at each output port that can initiate other operations so timing and
connection of parts are essential when modeling digital hardware. This is why
traditional programming is not suitable for digital systems, leading to the creation of
a special language like VHDL, for digital hardware description.

The use of an HDL program

As previously mentioned, HDL programs work in a different way as compared to
classic computer architectures. Any hardware description language has three major
roles in digital system design:

• Formal documentation: at the beginning of the circuit design, a clear description
is needed and, because the HDL semantics and syntax are precisely defined, this
program (HDL description) will be rigorous and explicit (perfect documentation
that can be shared between designers and software tools)

• Input to a simulator: before having a physical system, a simulation of the circuit
will be needed, making the HDL description ideal to model concurrent opera-
tions in a sequential host computer. The input for the HDL description will be
generated through a HDL test-bench formed by all test vector generation applied
at the inputs of our design described by the HDL program.

• Input to a synthesizer: refinement process converts high-level behavioral
description to a low-level structural description, those steps being performed by
the synthesis software. The input for the synthesis software is the HDL program;
the synthesis translates the HDL behavioral description into the structural
description using specific libraries for the components used in the HDL
program/description.

Before getting into details regarding the particular case of the VHDL hardware
description language, we present the common features of a hardware description
language in general. Thus the components of a digital logic description will be
defined as entities. Connectivity, concurrency and timing characterize each entity
and they are also defined in what follows.

The entity is the main independent block modeled after a real life digital circuit
which has no information about any other blocks. It describes the inputs and
outputs of a given logic block.

Connectivity is the term which defines how different entities interact. More than
one entity can be active at the same time, having operations processed in parallel;
this is possible because of the way entities communicate with each other through

1.3 The VHDL Hardware Description Language 7



wires; the wires defined by the hardware description language are associated with
connectivity parts from real life.

Concurrency characterizes the behavior for all entities placed on a given design.
Each entity performs specific operations on the input signals, whereas all operations
corresponding to all the entities in the design are executed in a concurrent manner.

Timing specifies the initiation and completion of each operation, providing the
order and the schedule of execution in case of multiple operations.

As we have seen so far, digital systems can be described at four different levels
of abstraction and, consequently, the hardware description language together with
the programming framework (software tools) need to cover all of them. Thus, the
language semantics are demanded to encapsulate the concepts of entity, connec-
tivity, concurrency and timing. Moreover, the structural implementation of a circuit
can be expressed by language constructs, whereas the operations and structures at
the gate and RT levels can be efficiently described by the language. An important
characteristic for the description language is to support a hierarchical design pro-
cess. For example, an entity representing the top level design may be composed of
multiple other entities incorporated in the top level one.

The most frequent used HDLs are VHDL and Verilog which have similar
capabilities and scopes, even if the syntax of the languages is very different. Both
being supported by the same software synthesis tools, they are used in industrial
standards, but further on VHDL will be discussed because it is more suitable for
parameterized design.

The programming language VHDL stands for VHSIC (very high speed inte-
grated circuit) HDL. It was developed by US Department of Defense as a hardware
documentation standard in the 80’s, being passed late on to IEEE (Institute of
Electrical and Electronics Engineers). After being adopted as a standard, several
extensions were developed over the years to meet the latest requirements of the
digital design and modeling.

1.3.2 VHDL Code Structure

The VHDL language is constructed from the hardware perspective of digital cir-
cuits. The fundamental building block that can be used in a VHDL program is
called design unit. The skeleton of a basic synthesizable VHDL program consists of
three collections of design units:

• library declarations,
• entity declarations and
• architectural bodies associated with the entities.

Each VHDL program is processed according to the following three steps:
analysis, elaboration and execution. Consequently, at first the VHDL code is
analyzed and translated into design units that are either stored in the libraries or
declared as entities. Next step is the elaboration process which designates the
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top-level entities and associates the corresponding architectural bodies. The last
step, execution, creates a single description of the overall design which can be
executed, meaning that its functionality can be tested through simulation.

To start with, each type of design units is described, followed by examples
which are given to reflect the semantic differences between HDLs and traditional
programming languages and to provide the big picture of VHDL.

A library represents a collection of pieces of VHDL code which can be re-used
or shared between different designs. The pieces of code included in a library are
written in the form of components (i.e. entities, data types), functions or procedures
grouped inside different packages.

For a library declarations, two identifiers are used, namely “library” and “use”.
Note that any VHDL reserved word (i.e. identifier) is mentioned in text using italic
fonts (e.g. “library”). The example below shows the library definition:

library library_name;

use library_name.library_package.package_part;

First the library name is specified followed by the package and package parts to be
used in the design. Note that, in case of VHDL code sections, VHDL reserved words
will be written in bold. The most common examples of library instantiation are std
library, work library and ieee library. The first two libraries are included by default in
any design and correspond to a resource library and the user defined library,
respectively. The first one includes data types and the second one includes all the user
defined files. The ieee library comprises various packages, out of which the most
important are: std_logic_1164 with standard logic values (‘U’—uninitialized, ‘X’—
strong drive, unknown logic value, ‘0’—strong drive, logic zero, ‘1’—strong drive,
logic one, ‘Z’—high impedance, ‘W’—weak drive, unknown logic value, ‘L’—weak
drive, logic zero, ‘H’—weak drive, logic one, ‘-’—don’t care) and std_logic_arith
which contains the signed and unsigned data types and related arithmetic and com-
parison operations together with several data conversion functions.

An entity specifies all inputs and outputs pins of the circuit to be designed. Its
corresponding syntax starts with the entity identifier and is presented as follows:

entity entity_name is

port ( port_name : signal_mode signal_type;

port_name : signal_mode signal_type;

…);

end entity_name;

The circuit pins are defined using the port identifier. The signal mode can be
unidirectional or bidirectional and is defined using the identifiers in, out, inout, or
buffer. The type of the signal can be for example bit, std_logic, std_logc_vector, etc.
More data types will be discussed in detail in the next Sect. 1.3.3, data types and
operators.
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Finally, the architecture for each entity is defined, and it specifies how the
designed circuit behaves. The corresponding syntax for any architecture is pre-
sented next:

architecture architecture_name of entity_name is

[declarations]

begin

(code)

end architecture_name;

In the declaration section, the internal signals are defined whereas the code
section is composed of concurrent statements and processes. Each concurrent
statement or process describes an individual part of the architecture; the architecture
can be seen as a collection of interconnected parts of a circuit which are executed in
a concurrent manner. If all the architecture statements are concurrent, we cannot say
the same thing for the statements within a process. Thus a process is sequential, its
statements being executed one after another. More details about processes are
presented in Sect. 1.4.2.

1.3.3 Data Types and Operators

We have seen so far that, the entity declaration involves the input/output port
description of the design logic circuit, whereas the architecture for each entity
describes the behavior of the concurrent statements and processes. Next we will
focus on the objects the entities and architectures work with. In this light, three
types of objects can be distinguished in case of the VHDL language: signals—
which represent the interconnection wires to connect the ports of the design unit
together, variables—which are used for local storage of data, visible inside pro-
cesses within the behavioral description of the design units and constants—which
define specific values.

A signal declaration is done as follows:

signal signal_name : signal_type [: = initial_value];

Signals are declared in entity declaration sections, architecture declarations or in
package declarations. The signals are globally visible in all the design entities in
case they are declared in the package declaration, whereas if the declaration is done
within the architecture section, the signals will be visible only within the archi-
tecture they are defined in.

In order to assign a value to signal, the following syntax is used within the
architecture of any entity:
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signal_name <= initial_value;

signal_name <= other_signal_name;

signal_name <= input_port;

A declaration and the assignment of a variable look like this:

variable variable_name : variable_type[: = value];

variable_name : = value;

Variables can be declared only inside architecture or within a sub-program. Note
that there is an important difference between variables and signals. The variables are
assigned immediately, whereas signals are only scheduled for assignment at the end
of the architecture or process. More details about signal assignment scheduling and
variable assignment are provided in Sect. 1.3.4.

The three objects discussed so far (the signal, the variable and the constant) can
be declared using a type specification. VHDL contains a wide range of types that
can be used to be associated with each object. Further on, the fundamental data
types of VHDL are presented together with the conversion possibilities between
different data types.

Commonly used data types definitions are found in the following packages:

• standard package of std library with bit, boolean, integer, and real data types;
• std_logic_1164 package of ieee library with std_logic and std_ulogic data types;
• numeric_std package of ieee library with signed and unsigned data types.

A type of a VHDL objects is defined by the set of values which may be assigned
to the object in question and by the operations that can be performed with these
objects. Each of the VHDL objects can be assigned only a value of its type,
meaning that VHDL is a strongly typed language.

It is important for the reader to be informed that, not all data types are syn-
thesizable, meaning that digital logic is inferred only to some of the existing data
types. A relevant example for an un-synthesizable data type is the file data type. An
object of type file represents a file containing sequential streams of a particular type.
A file object can be read from and written to with special procedures and functions.
The content of the file may be delivered to the designed logic block using
test-benches. The VHDL code for test-benches is not synthesizable and is used only
for delivering input and output data to the designed logic blocks. Writing
test-benches with VHDL code is discussed in 1.6. Further on we will focus on
synthesizable VHDL data types.

Predefined data types of std library
The predefined synthesizable VHDL data types included in the std library are:

• integer from—(231−1) to (231−1) with the subtypes natural and positive;
• boolean defined as false and true;
• bit: defined as 0 and 1;
• bit-vector: defined as one-dimentional array of the bit data type.
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The operators associated with the previously mentioned data types are listed in
Appendix A.

Standard logic data types
In real life a signal may have also different values than 0 or 1. Consequently, in

the std_logic_1164 package introduces the std_logic data type which consists of the
following values: ‘U’, ‘X’, ‘O’, ‘l’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’. ‘0’ and ‘1’ stand for 0 and
1 logic values. ‘U’ stands for uninitialized logic value, ‘X’ and ‘W’ stand for
unknown values, ‘Z’ stands for high impedance, ‘L’ and ‘H’ mean weak 0 logic and
weak 1 logic respectively, ‘-’ stands for don’t care logic value.

An array of elements with the data type std_logic is called std_logic_vector. The
dimension of the array is specified in brackets using to or downto reserved words.
Examples of signal declarations having the data type std_logic and std_logic_
vectors are presented next:

signal a : std_logic : = ‘0’;

signal b : std_logic_vector (7 downto 0) :=”00000000”;

Considering the VHDL is a strongly typed language, the definition of an object
having a specific data types includes also the operators that can be used with the
data type in question. Thus, it is important to know the operators that can be used
with each data type. For the std_logic data types, we can apply any logic operator
(e.g. not, and, or, xor, nand, nor, xnor). Regarding arithmetic operators, it is
important to know that they cannot be applied. The conversion to an arithmetic data
type is needed (e.g. signed or unsigned, discussed in numeric standard package).

If we consider the std_logic_vector data type, we have to mention the specific
operators for the array data types, namely relational operators, concatenation
operators. Examples of relational operators are equal (‘=’), not equal (‘<>’), greater
(‘<’), smaller (‘>’), whereas the concatenation operator is ‘&’, which is used to
combine parts or elements of different arrays to form a larger array.

Numeric standard data types
Digital hardware involves arithmetic operations, thus it comes natural to use the

integer data types for two a and b signals considered as the addition terms.
Nevertheless, the range of integer not being specified, it is difficult to implement
this in hardware. Consequently, signed and unsigned data types are included n the
IEEE numeric_std package. These types represent an array of elements having the
std_logic type. Declaration of such data type is similar with the std_logic_vector, as
denoted by the line of code:

signal a,b : signed(15 downto 0);

The difference between signed and unsigned is that for the signed type, the bits
are interpreted as a signed binary number in 2’s complement format. These
two types support arithmetic operations, whereas the operators to be used are abs
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(absolute value), *, /, +, −, mod and rem. Moreover, the relational operators such
as = , < , > and similar ones can be used with the signed and unsigned data types.

Type conversion
Having the synthesizable data types detailed in the previous sections, the next

step is to discuss the conversions between different data types. Type conversion is
mandatory in VHDL considering that direct operation between data of different
types cannot be performed. Type conversions are performed either using a type
conversion function or type casting. A simple example is given next, in order to
have a better view on type conversion. Let’s assume we need to access a memory
location for which the address is computed by an address computation unit
addr_comp_unit. In other words, the memory address is given by an arithmetic
operation, a multiplication for example. In case the memory address port is of
std_logic_vector type, the addr_comp_unit needs to deliver an output of type
std_logic_vector for the memory port. The next code example, example 1.1, makes
use of type casting in order to convert the multiplication result (i.e. unsigned data)
into std_logic_vector data type.

Example 1.1—Type casting unsigned to standard logic vector

——————————————————————————————————————————————————————————————————————

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity addr_comp_unit is

port (

a : in unsigned (7 downto 0);

b : in unsigned (7 downto 0);

addr : out std_logic_vector (15 downto 0));

end addr_comp_unit;

architecture behavioral of addr_comp_unit is

signal mult: unsigned(15 downto 0);

begin

mult <=a*b;

addr <= std_logic_vector(mult);

end behavioral;

——————————————————————————————————————————————————————————————————————

Note that for the previous example the numeric_std package was used.
Considering numeric_std package, the type conversions of numeric data types are
performed using the conversion functions or type casting operators summarized in
Table 1.1.
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1.4 Combinational Logic, Sequential Logic and VHDL

Combinational logic refers to circuits whose output is a function of the present
value of the inputs only. Whenever the inputs are changed, the information about
the previous inputs is lost, meaning that a combinational logic circuit has no
memory. It can, therefore, easy be implemented using conventional logic gates.

Sequential logic circuits are those whose outputs are also dependent upon cur-
rent and previous inputs. This means that they have memory, so storage elements
are required, which are connected to a combinational logic block through a feed-
back loop. In this way, the stored states, created by previous inputs, will affect the
output of the circuit. Note that not any circuit that has storage elements is a
sequential circuit. For example, memories obviously store data, but their output
depends only on the address bits applied as input data. A better view on the two
types of logic circuits can be depicted in Fig. 1.2.

Corresponding to the two types of digital logic, combinational or sequential, the
VHDL code is classified either as concurrent or sequential [2]. In what follows both
concurrent and sequential VHDL code are detailed and code examples are also
provided.

Table 1.1 Conversion functions for VHDL data types

From data type To data type Conversion function/type casting

unsigned, signed std_logic_vector std_logic_vector()

signed, std_logic_vector unsigned unsigned()

unsigned, std_logic_vector signed signed()

Unsigned, signed integer to_integer()

natural unsigned to_unsigned()

integer Signed to_signed()

Combina onal 
logic

input output

Storage 
Elements

Combina onal 
logic

input output

Storage 
Elements

Combina onal 
logic

outputinput
(a) (b) (c)

Fig. 1.2 a Combinational logic representation, b sequential logic representation, c memory
representation
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1.4.1 Concurrent VHDL Code

In general, all VHDL code is concurrent, meaning each line of code placed inside
the behavioral description of logic blocks is executed in parallel. The only
exceptions are statements placed inside a PROCESS, FUNCTION, or
PROCEDURE which rerpesent the sequential VHDL code and which are detailed
in the Sequential VHDL code section. Within curret section, the concurrent VHDL
code know also as dataflow code is discussed.

The VHDL statements used to create combinational circuits (i.e. concurrent
VHDL code) are: (i) the assignments using different type of operators (logical,
arithmetic, etc.), (ii) the WHEN statement and (iii) the GENERATE statement.
Example for each type of cocnurrent VHDL code are given next.

(i) Within current paragraf the description of a Gray code converter is presented as
an example of combinational logic circuit. In 1947, Frank Gray from Bell
Laboratories, introduced the term reflected binary code in a patented applica-
tion, based on the fact that it may be built up from the conventional binary code
by a sort of reflexion process. The main feature of this code is that a transition
from one state to a consecutive one, involves only one bit change. The con-
version procedure from binary natural to Gray is the following: the most sig-
nificant bit, MSB, from the binary code is the same with the MSB from the
Gray code. Starting from the MSB towards the least significant bit, LSB, any
bit change (0 to1 or 1 to 0) in binary natural, generates an ‘1’ and any lack of
change generates a ‘0’, in Gray code. The conversion from Gray to binary
natural is the reverse: the MSB is the same in binary natural code as well as in
Gray code; further on, from MSB to LSB, the next bit in binary natural code
will be the complement of the previous bit, if the corresponding bit from Gray
code is 1 or, it will be identical with the previous bit, if the corresponding bit
from Gray code is 0.

In order to build a combinational logic circuit which transforms any 4 bits input
vector [b3b2b1b0] from binary natural representation into Gray code representation
[g3g2g2g0], the truth table for the binary to Gray conversion is build. Based on
function minimisation, each binary output gi is expressed as gi = f(b3, b2, b1, b0),
where f is a logic function of the 4 bi inputs. Consequently the equations for a
binary to Gray conversion in case of a 4 bits logic vector are as follows:

g3 ¼ b3
g2 ¼ b2 � b3
g1 ¼ b1 � b2
g0 ¼ b0 � b1

ð1:1Þ

The VHDL code for the combinational logic cirrcuit (CLC), which describes the
binary to Gray conversion according to previous equations set, is presented. Firstly,
the CLC entity describes the input and output ports of the binary to Gray converter.
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Thus, the BN is a 4 bits input vector, whereas the Gray output returns the Gray code
representation of the BN input. Once the entity is described, we may proceed to the
behavioral description of the circuit. In our case, the architecture of our entity
includes concurrent VHDL code which includes 4 assignments, each coressponding
to one of the output bits. Moreover, the xor operator is also used to describe the set
of conversion Eq. (1.1).

Example 1.2—Concurrent VHDL code for binary to Gray converter

—————————————————————————————————————————————————————————————————————

entity CLC is

Port ( BN : in STD_LOGIC_vector (3 downto 0);

Gray : out STD_LOGIC_vector (3 downto 0));

end lab1;

architecture Behavioral of CLC is

begin

Gray(3) <= BN(3);

Gray(2) <= BN(3) xor BN(2);

Gray(1) <= BN (2) xor BN(1);

Gray(0) <= BN (1) xor BN(0);

end Behavioral;

——————————————————————————————————————————————————————————————————————

The previous concurrent VHDL code corresponds to the combinational logic
circuit descibed in Fig. 1.3.

(ii) Another concurrent VHDL code is the when statement. Commonly, these
statements are used when multiplexers (i.e. combinational logic) need to be
described with VHDL. Moreover, the tri-state buffers are also combinational
logic circuits that can be described using when statements. Examples of both
multiplexer and tri-state buffer are given next. Before proceeding to the
examples description, it is to be mentioned the two forms of the when state-
met. There is the simple when /else statement and the with /select /when
statement also known as selected when. The syntax for the two when statement
is provided next:

BN(3)

BN(2)

BN(1)

BN(0)

Gray(3)

Gray(2)

Gray(1)

Gray(0)

Fig. 1.3 Combinational logic
for binary to Gray conversion
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• for the simple when /else statement

assignment when condition else

assignment when condition else

…;

• for the selected when statement (with /select /when)

with identifier select

assignment when value,

assignment when value,

…;

The simple when /else statement is used for the descrption of the tri-state buffer
presented in Fig. 1.4a, whereas the multiplexer from Fig. 1.4b is described using a
selected when statement.

Example 1.3—VHDL code for multiplexer

———————————————————————————————————————————————————————————————————

library ieee;

use ieee.std_logic_1164.all;

entity multiplexer is

port ( a, b, c, d: in std_logic;

sel: in integer range 0 to 3;

output: out std_logic);

end mux;

architecture mux of multiplexer is

begin

with sel select

output <= a when 0,

b when 1,

c when 2,

d when 3;

end mux;

——————————————————————————————————————————————————————————————————————

output

a
b
c
d

sel(1:0)

outputin

ena

(a)
(b)

Fig. 1.4 a Multiplexer,
b tri-state buffer
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The behaviour of the logic crcuit described by the previous VHDL code is as
follows. The output is one of the 4 inputs a, b, c or d, depending on the sel input. If
the sel input is 0, the output is a; if the sel input is 1 the output is b and so on. Note
that in case of the with /select /when statement all the possibilities for the sel input
must be tested. This is why the keyword others is often used as one of the sel
identifier values (e.g. with sel select output <= 0 when others).

Example 1.4—VHDL code for multiplexer

——————————————————————————————————————————————————————————————————————

library ieee;

use ieee.std_logic_1164.all;

entity tri_state is

port ( ena: in std_logic;

input: in std_logic;

output: out std_logic);

end tri_state;

architecture tri_state of tri_state is

begin

output <= input when (ena = ’0’) else ’z’;

end tri_state;

—————————————————————————————————————————————————————————————————————

This examples ilustrates another way of using the when statement. The tri-states
logic circuit provides the input at the circuit output if the ena is ‘0’ and high
impedance ‘Z’ otherwise.

(iii) the generate statement is another concurrent statement used for repeating a
section of code for a number of times. In this way multiple instances of the
same assignment are created. In other words, generate statement may be used
to replicate logic. The syntax for this type of concurrent code is specified
below, whereas further on, an example (1.4) on how to use generate state-
ment to replicate logc is provided.

label: for identifier in range generate

(concurrent assignments)

end generate;

Example 1.5—Generate statement to replicate logic

—————————————————— ———————————————————————————————————————————————

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity converter is

Port ( input : in STD_LOGIC_VECTOR (7 downto 0);

output : out STD_LOGIC_VECTOR (7 downto 0));
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end converter;

architecture Behavioral of converter is

begin

U1: for i in 0 to 7 generate

begin

output(i) <=input(7-i);

end generate;

end Behavioral;

—————————————————————————————————————————————————————————————————————

The previous VHDL code example describes a combinational logic circuit which
takes as input a logic vector input and returns another logic vector, the output, with
the same bit values as the input but in reverse order. The code line output(i) <=input
(7-i) assigns to the output bit output(i) the logic value from input(7-i). The generate
statement multiplicates the previous assignments for all i values from 0 to 7, the
result beeing the output logic vector with the bit values from the input in reverse
order.

1.4.2 Sequential VHDL Code

As mentioned before, VHDL code is concurrent, all the statements placed in logic
blocks architectures being executed in parallel. Nevertheless, it is also important to
have statements executed one after another; this is the case of sequential circuits.
A common example is a shift register which sequentially changes its content each
clock cycle by means of bits shift. Also, arithmetic operations need to be executed
one after another since one operation may depend on the results of a previous one
(see the logarithm computation unit from Chap. 3). In order to describe sequential
logic with VHDL, the statements have to be included within a process, function or a
procedure section. The statements placed in one of these three types of code
sections are sequential. Notice that not any kind of statement can be included in
processes, function or procedures; the statement are restricted to if, wait, case, loop
together with variables and signals assignments. Further on, a process is defined in
the context of VHDL coding and also, all sequential statements (signal and variable
assignments, if, wait, case and loop statements) which can be placed within a
process, are defined.

The process statement or simply a process is composed of 3 parts: sensitivity list,
process declarative part and the statements part. The process begins with the pro-
cess keyword, followed by a parenthesized list of signals called the sensitivity list.
The process is activated on any change of the signals in the sensitivity list. After the
process sensitivity list, the declarative part comes followed by the sequential
statements part. The syntax for a process declaration is presented next.
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[label:] process (sensitivity list)

variable declarations;

begin

(sequential code)

end process [label];

Remark

Answering the question “How the processes are executed?” is the key for under-
standing the VHDL code. We have so far how sequential logic is described using
processes. How these processes are executed is explained next. A process execution
is triggered by any change in the signals from the sensitivity list. Once a change
occurs in the sensitivity list, the process starts. Variable and signals are assigned
during the process execution in case some given conditions are met (e.g. if
reset = ‘1’ then a signal or variable is initialized with a given value). Commonly,
these variables and signals are passed to the output of the entity from which the
process belongs. Notice that there is an important difference concerning variables
and signals assignments within a given process. Thus, in case of signal assignments,
the assigned values are only scheduled for instantiation; the scheduled values are
instantiated only at the end of the process. On the other hand, in case of variable
assignment, the assigned values are immediately instantiated to the variable in
question, their new values being available in the next line of code.

Signal and variable assignments
Signal and variable assignments are used to pass non-static values between logic

components described with VHDL code. Signals can be declared in a package,
entity or architecture, whereas variables can be declared only inside a sequential
code section (process, function or procedure). Considering the signals assignment,
it can be done either inside or outside of a process. In the first case, combinational
logic circuits are described, meaning the assigned value is instantly visible. In case
signals are assigned in a process, the assigned value is available only after the
conclusion of the process run. Notice that for signal assignment the operator is
“<=”. Variables assignment on the other hand, can only be performed within
sequential code section. The update of a variable is immediate, thus the new value is
available promptly after the assignment. Another important aspect regarding vari-
ables is that they represent local information, and they are only visible inside the
process they are assigned in. In order to pass values outside the process, the signals
are used which are globally declared within the architecture declaration section. For
variable assignment the operator is “:=”. Further on two examples are provided in
order to underline both the signal and the variable assignment. Both examples are
used to describe a counter used to deliver input data to the combinational logic
circuit aiming for a binary to Gray conversion (Fig. 1.3). The counter and the
combinational logic block for the binary to Gray conversion are both illustrated in
Fig. 1.5.
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Example 1.6—Counter description with variable assignment

——————————————————————————————————————————————————————————————————————

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity cnt is

port ( clk: in std_logic;

CE : in std_logic;

reset : in std_logic;

Counter: out std_logic_vector( 3 downto 0)) ;

end cnt;

architecture Behavioral of cnt is

begin

process (clk, reset, CE)

variable temp_a: std_logic_vector (3 downto 0): = ”0000”;

begin

if reset = ’1’ then

temp_a: = ”0000”;

elsif clk = ’1’ and clk’event then

if CE = ’1’ then

temp_a : = temp_a + 1;

end if;

end if;

counter <= temp_a;

end process;

end behavioral;

—————————————————————————————————————————————————————————————————————

The logic circuit name counter described by the previous VHDL code is used to
consecutive binary numbers to the binary to Gray converter. The inputs are CE
(count enable), reset and clk,which are found also in the sensitivity list of the process
used to increment or to reset the counter output. The ‘1’ logic value on the reset port
sets the counter output to “0000”, whereas the ‘1’ logic value on CE port enables the
counting, meaning each clk cycle the output value is incremented by 1. The variable
temp_a is used for incrementing, and its value is passed outside the process to the
counter output counter by the following assignment counter <= temp_a. Similar

Binary to gray 
converter

Counter

CLK

B0

B1

B2

B3

G0

G1

G2

G3

Reset

CE

Fig. 1.5 Conversion of 4 bits
binary numbers to Gray code
representation
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behavior can be achieved using the following VHDL code, where the counter
description uses signal assignment instead of variable assignment.

Example 1.7—Counter description with signal assignment

————————————————————————————————————————————————————————————————————

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity cnt is

port ( clk: in std_logic;

CE : in std_logic;

reset : in std_logic;

Counter: out std_logic_vector( 3 downto 0)) ;

end cnt;

architecture Behavioral of cnt is

signal temp_b: std_logic_vector( 3 downto 0);

begin

process (clk, reset, CE)

begin

if reset = ’1’ then

temp_b <= ”0000”;

elsif clk = ’1’ and clk’event then

if CE = ’1’ then

temp_b <= temp_b + 1;

end if;

end if;

end process;

counter <= temp_b;

end behavioral;

—————————————————————————————————————————————————————————————————————

In case of the second counter description, the temp_b signal was used to
increment the counter output (counter). Notice that the temp_b signal was declared
in the architecture section as opposed to the variable temp_a from the first counter
example (temp_a declared in the process declaration section). Consequently the
signal temp_b was visible outside the process statement. Thus, the concurrent
assignment counter <=temp_b, assures that the counter output is the signal temp_b
incremented each clk cycle within the sequential process. The process is triggered
by any change in the signals from the sensitivity list. Thus, a reset value ‘1’ sets the
output to “0000”, whereas a CE value ‘1’ enables the counting each clk cycle, as it
can be seen on the simulation results from Fig. 1.6.

22 1 Introduction to Digital Design with VHDL



If statement

The if statement is used for sequential logic description, and, therefore it can be
used only inside a process. The syntax of if is presented next:

if conditions then assignments;

elsif conditions then assignments;

…

else assignments;

end if;

The VHDL code for a shift register implementation is provided next for the
exemplification of the if statement. Moreover, the generic statement is used within
the shift register in order to define the shift register length. The generic is generally
used for the parameterization of the VHDL code. Thus, let us consider we want to
build a register which may be used in different logic blocks, and its length may vary
depending on the logic block the register is used in. In this case, using generic, the
length of the register is once defined as n in the entity section (generic (n: integer
: = 8);). This n value is considered for all the VHDL code description which follows
further on. In this way, the VHDL code is easily reusable if we want to describe a
shift register of any length, given by n. A single change of n in the entity section is
visible in all the VHDL code. This leads to a parameterized VHDL code for any shift
register of length n (see the next VHDL code section for exemplification of generic).

We describe further on a shift register of variable length n. The inputs are d, clk,
rst and the output is q. The behavior of the circuit is described using the if state-
ment; the circuit reset is performed if ‘1’ is applied on the rst input. Moreover, on
rising clock edge (code line: elsif (clk’event and clk = ’1’)), the input d is feed to
the n’th register cell, whereas the register content is shifted to the right (code line:
(temp <= d & temp (n downto 1);). The circuit output q is assigned with the first
register cell (temp(0)) outside of the register’s corresponding process.

Example 1.8—VHDL code for n variable length shift register

——————————————————————————————————————————————————————————————————

entity shiftreg is

generic (n: integer : = 8);

port (d, clk, rst: in std_logic;

q: out std_logic);

end shiftreg;

Fig. 1.6 Counter simulation results
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architecture behavior of shiftreg is

signal temp: std_logic_vector (n downto 0);

begin

process (clk, rst)

begin

if (rst = ’1’) then

temp <= (others => ’0’);

elsif (clk’event and clk = ’1’) then

temp <= d & temp (n downto 1);

end if;

end process;

q <= temp(0);

end behavior;

—————————————————— end of shift register example ————————————————

The shift register and its behavior are described in the Figs. 1.7 and 1.8,
respectively. As expected, in Fig. 1.8 it can be seen that, the ‘1’ logic input of the
circuit is available at the output with an n = 8 clock cycles delay.

Wait statement

The wait statement is also part of the sequential VHDL code. Placed inside pro-
cesses, the wait statement comes with a specific request concerning the process that
is used in. The process cannot have a sensitivity list. The syntax for the wait
statement has three forms, mentioned further on:

Flip - 
Flop

d
q

rst

clk
Flip - 
Flop

Flip - 
Flop

n length shift register 

Fig. 1.7 Counter simulation results

Fig. 1.8 Shift register simulation results
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(1) wait until signal_condition;

(2) wait on signal1 [, signal2, … ];

(3) wait for time;

The first wait statement syntax accepts only one signal condition, and it s
mandatory to place the statement at the beginning of the process, since as men-
tioned before, the process has no sensitivity list. This process is executed when the
wait condition is met.

The second wait statement involves multiple signals, any change on the signal1,
signal2, etc. signals list causes the process execution.

The last wait statement, wait for time, is used only for simulation purposes. Thus
it is not synthesizable; its use is detailed in the sub-Sect. 1.5 Writing test-benches.

1.5 Structural Description with VHDL

Digital systems are commonly described by multiple sub-components and their
interconnection links. Like in any other programming languages where a program is
composed of multiple sub-programs, a VHDL description of the architecture of a
given entity may be hierarchically described by different components (entities)
which interact with each other through interconnection links. This type of
description is known as a structural description. Further on we will discuss how the
declaration and the instantiation of a given component is done within the archi-
tecture body of an entity that uses structural description.

We’ve seen so far that, an entity specifies the input output ports of a digital
circuit, whereas the circuit behavior is described in the architecture body. In the
example what follows, structural VHDL code is used to describe the behavior of the
entity named structural_description. Two components, comp1 and comp2 are
declared within the declarative section of the entity’s architecture. The syntax for
component instantiation is:

component comp is port ( port name : signal mode signal_type;

…);

Within the architecture body section, the components comp1 and comp2 are
instantiated. Through instantiation, the input and output signals of the entity struc-
tural_description are assigned to the components ports. Internal interconnection links
between components are drawn using the declared signals such as w1 signal declared
as: “signal w1: std_logic;”. The syntax for component instantiation is given next:

inst1: comp port map (signals list);
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As it can be noticed, a labeled is used for component instantiation (inst1) fol-
lowed bt the component name (comp), port map identifier and the signals list in
between brackets. The signals found in the signal list, associate signals to all of the
component’s input and output ports.

For the exemplification of components declaration and instantiation, let us
consider the logic circuit from Fig. 1.9. Here, the logic circuit named struc-
tural_description, having 3 inputs ports A, B, C and an output X, is illustrated. The
circuit behavior is described by two components comp1 and comp2, and their
interconnection using the wire w1. In order to describe this circuit using VHDL
code, a structural description is used (see the next VHDL code section VHDL code
for structural description). An entity entitled structural_description is used to
define the input and output ports of our circuit (A, B, C, D and X). Two components
comp1 and comp2 are declared in the architecture section together with a signal w1
used for interconnection link between the two components. After the declaration
section the architecture description begins. Here, the two components are instan-
tiated. The instantiation assigns the input and outputs for each of the components,
using the ports of the structural_description entity and the interconnection wires
defined as signals (e.g. w1 signal).

Example 1.9— VHDL code for structural description

—————————————————————————————————————————————————————

entity structural_description is

Port (A, B, C: in STD_LOGIC;

X: out STD_LOGIC);

end structural_descripton;

architecture Behavioral of structural_description is

component comp1 is port (C1, C2: in std_logic;

Out1: out std_logic);

end component comp1;

component comp2 is port(C3, C4 : in std_logic;

Out2: out std_logic);

end component comp2;

signal w1: std_logic;

begin

inst1: comp1 port map (A, B, w1);

inst2: comp2 port map (w1, C, X);

end Behavioral;

—————————————————————————————————————————————————————

Structural_descrip on

comp1A

C

B
comp2

Xw1

Fig. 1.9 Example of a
structural description
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The previous example can be used as the starting point to describe more complex
digital circuits using structural description. Consequently, a digital logic circuit is
described next using VHDL structural description, in order to accomplish an image
processing task, image profile computation. In the next section the computation of
image profiles is described, followed by the description of the digital logic which
performs the computation.

A digital image is commonly represented as a two dimensional array of inten-
sities (pixels) denoted by I = (px,y), where pxy is the pixel intensity values for the
pixel found at the (x,y) location. In case of a color image denoted by Ic, a given
pixels (x,y) is described by a set of 3 intensity values (rx,y,gx,y,bx,y), corresponding to
the colorimetric information red (R), green (G) and blue (B), respectively. The
luminance information in case of a color image Ic is obtained as a weighted sum of
the R, G and B intensities for all (x,y) image pixels as in Eq. (1.2).

lumx;y ¼ 0:299 � rx;y þ 0:587 � gx;y þ 0:114 � bx;y ð1:2Þ

Summing up pixel intensities representing luminance information along x and
y image direction lead to the vertical and horizontal luminance function profiles of
an image, as expressed by Eqs. (1.3) and (1.4), respectively.

VðyÞ ¼
X

x

lumx;y ð1:3Þ

HðxÞ ¼
X

y

lumx;y ð1:4Þ

The overall view of the corresponding digital logic for image profile computa-
tion is illustrated in Fig. 1.10. The logic blocks used are the RGB to Luminance, the
Address Computation Unit, and the Accumulators for each of the profiles, vertical
and horizontal one.

The image colorimetric information is delivered pixel-wise as input to the RGB
to Luminance logic block, which delivers the luminance information for each (x,y)
image pixel. The clk and the start inputs are also present for the RGB to Luminance
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Fig. 1.10 Block diagram for image profile computation
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logic block. The start input marks the presence at the input of each RGB triplets for
which the luminance is computed. Note that, according to Eq. (1.2), for one Y value
computation, 3 multiplications and 2 additions are needed. A number of two clock
cycles are needed, thus the output Y of the circuit is available with 2 clk cycles
latency. The data ready on the output port is signalized by the done output, which
represents the start input propagated through the done_pipe register. The size of the
done_pipe register is given by the constant pipe_level set to 1. Further on we will
focus on the luminance computation. The proposed logic block takes advantage of
the fact that both luminance and colorimetric information are represented as integer
values. Thus, R, G and B values are scaled, by multiplication with a factor of 28.
The scaling is performed in order to have integer factors in the Eq. (1.2). The final
results is then divided by 28, by means of bits shifting (code line Y = temp (15
downto 8)), in order to have the luminance output Y in the range of 1 to 255.
The VHDL code used for the description of previous functionality is provided in
the next VHDL code section.

Example 1.10— VHDL code for RGB to luminance conversion

—————————————————————————————————————————————————————————————————————

entity RGBtoY is

generic (c : integer : = 8);

port (clk: in std_logic;

start: in std_logic;

R: in std_logic_vector (7 downto 0);

G: in std_logic_vector (7 downto 0);

B: in std_logic_vector (7 downto 0);

Y: out std_logic_vector (7 downto 0);

done : out std_logic);

end RGBtoY;

architecture behavioral of rgbtoy is

constant r_coef: unsigned (7 downto 0) : = to_unsigned( integer( real

(0.299)

* real(2**(c)-1) ), c);– 0.299 * 255

constant g_coef: unsigned (7 downto 0) : = to_unsigned( integer( real

(0.587)

* real(2**(c)-1) ), c);– 0.587 * 255

constant b_coef: unsigned (7 downto 0) : = to_unsigned( integer( real

(0.114)

* real(2**(c)-1) ), c);– 0.114 * 255

signal r_scaled, g_scaled, b_scaled: unsigned (8 + c-1 downto 0);

constant pipe_level : integer: = 1;

signal done_pipe: std_logic_vector

(pipe_level-1 downto 0): = (others => ’0’);

signal temp : std_logic_vector (15 downto 0);

begin

process (clk)
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begin

if clk’event and clk = ’1’ then

r_scaled <= unsigned(R) * r_coef;

g_scaled <= unsigned(G) * g_coef;

b_scaled <= unsigned(B) * b_coef;

temp <= std_logic_vector(r_scaled + g_scaled + b_scaled);

done_pipe(0) <= start;

done <= done_pipe(0);

end if;

end process;

y <= temp(15 downto 8);

end behavioral;

——————————————————— End of RGB to luminance conversion ————————

As part of the profile computation architecture schematic (see Fig. 1.9), the two
accumulators used to compute the image vertical and horizontal profile are dis-
cussed. Pixel-wise luminance information Y is delivered to both accumulators.
Using an adder for each memory, a specific memory value x is read from the
memory and the current pixel luminance is added to the x value. This approach
leads to the completion of the content for the two memories, which in the end
represent the image profiles. The next VHDL code section infers a Block RAM
memory for horizontal image profile storage. The inferred Block RAM is called
RAM_X. Further details on memory inference and instantiation are provided in
Chap. 6.

Example 1.11— RAM_X memory inference for horizontal profile computation and

storage

—————————————————————————————————————————————————————————————————————

entity RAM_X is

Port (CLK : in STD_LOGIC;

we: in std_logic;

addr: in std_logic_vector(12 downto 0);

data: in std_logic_vector (31 downto 0);

data_out: out std_logic_vector (31 downto 0));

end RAM_X;

architecture Behavioral of RAM_X is

type RAM is array (2**13-1 downto 0) of std_logic_vector (32-1 downto 0);

signal RAM_X: RAM: = (others => (others => ’0’));

begin

process (CLK)

begin

data_out <= RAM_X(conv_integer(addr));

if (CLK’event and CLK = ’1’) then

if (we = ’1’) then

RAM_X(conv_integer(addr)) <= data;
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end if;

end if;

end process;

end Behavioral;

———————————————— End of block RAM memory inference —————————————————

The functionality of the Block RAM is summarized as follows: the input data is
written at the addr memory address in case the write enable input we is 1 logic.
A concurrent statement (i.e. data_out <= RAM_X(conv_integer(addr));) delivers
the memory content from the addr address to the output data_out, performing a
memory read operation. In order to build an accumulator using this type of memory
for both horizontal and vertical image profiles, two adders are inferred one for each
memory. The adder inputs at a given time are, the current pixel luminance infor-
mation and the memory values read from a specific memory address. The adder
output represents a sum to be written on the same memory location from which the
first read was done.

The question that arises is which are the specific memory addresses to be given
as inputs to the block RAM memories, in order to build the image profile whereas
all image pixels are delivered sequentially at the input. The logic block address
computation unit (ACU) answers this question, by providing the x and y addresses
to the block ram memories for the horizontal and vertical image profile, respec-
tively. The VHDL code for the ACU logic block is VHDL code section.

Example 1.12— Address computation unit

————————————————————————————————————————————————————————————————————

entity x_y is

Port (Xmax :in std_logic_vector (12 downto 0);

Ymax : in std_logic_vector (11 downto 0);

CLK : in STD_LOGIC;

Reset: in STD_LOGIC;

Start : in std_logic;

X : out STD_LOGIC_VECTOR (12 downto 0);

Y : out STD_LOGIC_VECTOR (11 downto 0);

done : out std_logic);

end x_y;

architecture Behavioral of x_y is

signal x_out : UNSIGNED(12 downto 0) : = to_unsigned (0,13);

signal y_out : UNSIGNED(11 downto 0) : = to_unsigned (0,12);

signal reset_v : std_logic: = ’0’;

signal first_start : std_logic: = ’0’;

signal done_pipe: std_logic_vector (1 downto 0): = (others => ’0’);

begin

process (CLK, Reset)

begin

if reset = ’1’ then
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x_out <= (others => ’0’);

y_out <= (others => ’0’);

reset_v <= ’1’;

elsif CLK = ’1’ and CLK’event then

if (start = ’1’ and first_start = ’1’) or reset_v = ’1’ then

if x_out < UNSIGNED(Xmax) then

x_out <= x_out + 1;

elsif y_out < UNSIGNED (Ymax) then

x_out <= (others => ’0’);

y_out <= y_out + 1;

else

x_out <= (others => ’0’);

y_out <= (others => ’0’);

reset_v <=‘0’;

end if;

end if;

done_pipe(0) <= START;

done_pipe(1) <= done_pipe(0);

if done_pipe(1) = ’1’ then

first_start <= ’1’;

end if;

end if;

end process;

done <= done_pipe(1);

X <=std_logic_vector(x_out);

Y <= std_logic_vector (y_out);

end Behavioral;

—————————————— End of address computation unit ——————————————

The input /output ports of the ACU included in the entity declaration section are:
(i) Xmax and Ymax inputs, corresponding to the image size, and to the horizontal
and vertical profile length, respectively, (ii) the X and Y outputs corresponding to
the memory addresses to be read and written for building up the image profiles,
(iii) start input which marks the computation start for the current pixel, (iv) the
output done which signalizes that the addresses are available for the block RAM
memories, (v) the reset which initializes the output addresses with 0 values. The
functionality of the ACU unit is detailed as follows: the 1 logic reset values ini-
tializes the internal x_out and y_out registers with 0. The x_out and y_out registers
content is concurrently delivered at the ACU output (e.g. X <=std_logic_vector
(x_out);). The type cast operator std_logic_vector is needed, since the unsigned
type is used for registers content, since addition operation (incrementing) is used on
these registers. Each time an RGB input pixel is available at the overall image
profile computation architecture, the start signalizes this event, and the x_out and
y_out registers values are incremented. Moreover, the start input is passed through
an two cells internal shift register namely done_pipe. This operation is performed in
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order to allow the RGB conversion block to perform the computation. Thus, with a
2 clock cycles delay, the done output marks the availability of both the addresses
and luminance information at the memory inputs for profile completion.

Once the functionality for each logic block is described, VHDL structural
description is used for interconnecting the components of the image profile com-
putation architecture. The VHDL code section corresponding to the structural
description of the proposed architecture is detailed in the Appendix B. Each
component (i.e. RGB to Luminance, Address Computation Unit and the
Accumulators) is instantiated and, using signal declarations, the components are
interconnected.

In the next section the VHDL language constructs and semantics for building
test-benches aiming to test the functionality of digital logic blocks are described.
Prior to VHDL language for test-benches description, a test-bench is build for the
proposed architecture for image profile computation.

1.6 VHDL Code for Simulation Test-Benches

The current section presents how the functionality of digital logic blocks (i.e. units)
is verified by means of simulation. For simulating the functionality of a digital logic
block, test-benches are developed using VHDL language. Simulation test-benches
generally need two inputs: the description of the design unit called unit under test
(UUT) and stimulus description to drive the design. The top level design for a
simulation test-bench is illustrated in Fig. 1.10. Note that the test-bench design has
no connection to “the outside world”. It contains only internal signals to connect the
two instantiated components: (1) the unit under test (UUT) and (2) the stimulus
driver. Thus, the entity declaration for a test-bench used to simulate the function-
ality of the UUT is:

—————— UUT ———————————

entity test-bench is

–empty

end test-bench;

————— end of UUT —————

When writing test-benches, it is essential to understand the difference between
VHDL code for the two test-bench components, the unit under test and the stimuli
driver. Thus, synthesizable VHDL code constructs are used to describe the unit
under test. In this way, the synthesis tool can generate the digital logic with the
desired functionality for the unit under test. Further on, stimuli with correct timing
are applied to the inputs of the UUT and the outputs are checked using internal
test-bench signals. These two operations (i.e. applying stimuli and checking out-
puts) are performed using the stimuli driver. The VHDL code for stimuli driver
description is non-synthesizable (Fig. 1.11).
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We’ve seen so far that synthesizable and non-synthesizable VHDL code con-
structs correspond to digital design unit description and stimuli driver description,
respectively. Consequently, it comes natural for the data types to be also classified
as synthesizable and non-synthesizable. An eloquent example for non-synthesizable
data type is the type file. This allows input signal values to be stored in an external
text file. This file can be read and its content (e.g. integer values) can be delivered as
stimuli to the input signals of the UUT using the stimuli driver unit. To have a view
on all predefined VHDL data types and their classification as synthesizable or
non-synthesizable, the Table 1.2 is presented.

A special attention is given next to the time and the file data types. Considering
time, in case of synthesizable VHDL code, only time-less assignments are used. On
the other hand, for test-bench description, the assignments can be time driven; this
means the moment the assignment takes place can be specified using time. An
example is given next:

y <= ‘1’ after 1 ns;

Relative to the current simulation time, the y signal assignment is performed
after 1 ns. The units that can be used for a variable of time data type are: fs
(femtosecond), ps = 1000 fs (picosecond), ns = 1000 ps (nanosecond), us = 1000
ns (microsecond), ms = 1000 us (millisecond), sec = 1000 ms (second), min
(minute), hr (hour).

As referred to the file data type, it is used to deliver input test vectors to the unit
under test from a given file. Moreover, file data types can store simulation results
for further analysis. Samples of VHDL code are provided next in order to illustrate

Top level design for a simulation 
test-bench

Stimulus 
driver

Unit 
Under 
Test

(UUT)

Fig. 1.11 Block diagram for
image profile computation

Table 1.2 Predefined data types included in the standard library

(use std.standard.all)

Synthesizable data types (used for digital
logic description)

Non-synthesizable data types (used for stimuli
driver description)

Bit character

Boolean String

Int3eger, natural positive Real

bit_vector time
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how data can be written and read from text files by the simulation test-benches.
First, text input output libraries must be included in the test-bench description as
specified next.

use IEEE.STD_LOGIC_TEXTIO.ALL;

use STD.TEXTIO.ALL;

All files to be used in the test-bench must be declared using the file statement.
The declarations are included in the test-bench architecture or in the main
test-bench process. The supported modes for opening the files are read_mode,
write_mode or append mode. These file opening modes are also specified within the
file declaration section as it can be seen in the next code example.

file my_file1: text open read_mode is ”inputdata.txt”;

file my_file2: text open write_mode is ”results.txt”;

Once the files declared, readline function can be used to hold the data elements
from file lines. Thus, a variable in_line is declared as one of the file lines and it is
followed by the function which performs the file line read operation into the
declared variable:

variable In_line: line;

readline(my_file1, In_line);

One file line includes one or more fields. Individual fields in each line of file are
further on accessed by a read procedure, defined in the Text IO package. Each read
procedure call includes a set of parameters which include the file line, a destination
variable to which the value for each line field are assigned, and a boolean variable
which checks if the line field value corresponds to the type of the variable used to
store the individual line fields values. The VHDL types supported for the desti-
nation variable of the read procedure are bit, bit_vector, boolean, character, string,
integer, and time. An example of a read operation is provided next, where an integer
variable destination is used to read the fields of the In_line variable, representing
one line of the my_file1 file.

variable destination: integer;

variable check: Boolean;

read (In_line, destination, check);

Readline and read statements can be executed until an end-of-file or an
end-of-line condition, respectively. Thus, a loop within the test-bench main process
can be used to verify these conditions and to perform sequential read or readline
operations until the conditions are fulfilled.
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while not endfile(my_file1) loop

readline (my_file1, In_line);

…

end loop;

The VHDL simulation mechanism

The simulation mechanism is based on multiple processes which drive stimuli to
the inputs of the unit under test and also check the outputs of the same unit. There
are three steps involved in the VHDL simulation mechanism: (1) elaboration,
(2) initialization and (3) execution. In the first step, all the design units, stimuli
driver and the units under test are compiled and loaded for simulation. In the second
step, all drivers (i.e. variable and signals) are given their initial values or default
values in case no initial value is present. By drivers we understand signals and
variables used to deliver input data and to read the output data to and from the unit
under test. Once the initial values are set, the execution step starts.

The execution step is a cyclic process driven by events /changes that occur on
the test-bench signals/drivers. Once the changes occur in the signals, the test-bench
processes are entering the execution phase. One simulation cycle is known as delta
cycle. The execution step is divided into two phases: (i) process execution phase
and (ii) signal update phase.

In the process execution phase all active processes are executed. Variables
immediately assigned and signals are scheduled for assignment in the next signal
assignment phase.

In the signal update phase, signals are updated. This update operation can acti-
vate other processes or even the same process, due to the sensitivity to the changed
signals. For a better understanding, the execution step together with its two phases is
discussed in case of two processes described in the next VHDL code section.

—————— first process ——————

Gate: process(A,B)

begin

S <= A and B;

End process;

—————— second process —————

Inverter: process (S)

Begin

Z <= not S;

End;

—————————————————————————————

Considering the two processes, we assume that the current simulation time is
10 ns. In case a change in the A signal occurs, the first process enters the process
execution phase, and the signal S is scheduled for assignment in the next signal
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update phase. In terms of delta cycles, the update of the signal S is scheduled to
change at 10 ns + delta.

After the execution phase the signal update phase comes and the S signal is
updated at 10 ns + delta (Fig. 1.12a). This activates the second process which
enters the execution phase and the Z signal is scheduled to change at the next signal
update phase at 10 ns + 2�delta. At this time no processes are activated since no
change are on the sensitivity lists, so the simulator time increases.

Example of VHDL test-bench

Considering the image profile computation unit described in Fig. 1.10, the VHDL
code for the test-bench used for its simulation is described next. As previously
discussed, no inputs or outputs are present in the test-bench entity. On the other
hand, the architectior declaration sections includes the component which performs
the image profile computation, called Prof_comp. The declaration section contains
also the signals which drive the inputs and outputs values to the UUT. The list of
signals include the size of the profiles (Xmax, Ymax), clock, the R, G and B pixel
intensity values for the 3 image channels, the start which marks new pixel intensity
values present at the input, the X and Y outputs which monitor the read and write
addresses generated for the Block RAM memories which store the profiles, the
DataRAM_X and DataRAM_Y which monitor the read and written data into the
Block RAMs, and last the done signal which marks pixel intensity data has been
added into both the Block RAMs corresponding to the vertical and horizontal image
profiles. Considering test-bench architecture, it contains the instantiation of the unit
under test (UUT) and two processes, one for the clock generation and one process
for stimuli driver to the UUT.

Example 1.13—Test-bench for the image profile computation unit

————————————————————————————————————————————————————————————————————

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.all;

USE ieee.numeric_std.ALL;

ENTITY test_all IS

END test_all;

ARCHITECTURE behavior OF test_all IS

– Component Declaration for the Unit Under Test (UUT)

simulation 
time

0 ns 10 ns

δ

simulation time10 ns

δ

δ(a) (b)

Fig. 1.12 The simulation time and the delta cycle of the simulation process
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COMPONENT Prof_comp

PORT(

Xmax : IN std_logic_vector(12 downto 0);

Ymax : IN std_logic_vector(11 downto 0);

CLK : IN std_logic;

Start : IN std_logic;

Reset : IN std_logic;

R : IN std_logic_vector(7 downto 0);

G : IN std_logic_vector(7 downto 0);

B : IN std_logic_vector(7 downto 0);

X : OUT std_logic_vector(12 downto 0);

Y : OUT std_logic_vector(11 downto 0);

DataRAM_X : out std_logic_vector (31 downto 0);

DataRAM_Y : out std_logic_vector (31 downto 0);

DBG_we : out std_logic;

DBG_sum_x : out std_logic_vector (31 downto 0);

done : OUT std_logic

);

END COMPONENT;

–Inputs

signal Xmax : std_logic_vector(12 downto 0) : = (others => ’0’);

signal Ymax : std_logic_vector(11 downto 0) : = (others => ’0’);

signal CLK : std_logic : = ’0’;

signal Start : std_logic : = ’0’;

signal Reset : std_logic : = ’0’;

signal mux_mode : std_logic;

signal addr_in : std_logic_vector(31 downto 0);

signal R : std_logic_vector(7 downto 0) : = (others => ’0’);

signal G : std_logic_vector(7 downto 0) : = (others => ’0’);

signal B : std_logic_vector(7 downto 0) : = (others => ’0’);

–Outputs

signal X : std_logic_vector(12 downto 0);

signal Y : std_logic_vector(11 downto 0);

signal DBG_we : std_logic;

signal DBG_sum_x : std_logic_vector(31 downto 0);

signal reset_out : std_logic;

signal DataRAM_X : std_logic_vector(31 downto 0);

signal DataRAM_Y : std_logic_vector(31 downto 0);

constant CLK_period: time : = 10 ns;

BEGIN

– Instantiate the Unit Under Test (UUT)

uut: Prof_comp PORT MAP (

Xmax => Xmax,

Ymax => Ymax,

CLK => CLK,
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Start => Start,

Reset => Reset,

R => R,

G => G,

B => B,

X => X,

Y => Y,

DBG_we => DBG_we,

DBG_sum_x => DBG_sum_x,

DataRAM_X => DataRAM_X,

DataRAM_Y => DataRAM_Y,

done => reset_out

);

– clock generation process

CLK_process : process

begin

CLK <= ’0’;

wait for CLK_period/2;

CLK <= ’1’;

wait for CLK_period/2;

end process;

– Process to drive stimuli to the UUT

stim_proc: process

begin

xmax <= ’0’&X”004”;

ymax <= X”005”;

wait for 10 ns;

wait until CLK’EVENT and CLK = ’1’;

reset <= ’1’;

wait until CLK’EVENT and CLK = ’1’;

reset <= ’0’;

wait until CLK’EVENT and CLK = ’1’;

wait for 80 ns;

R <= X”25” after 2 ns;

G <= X”25” after 2 ns;

B <= X”25” after 2 ns;

start <= ’1’;

wait until clk’event and clk = ’1’;

start <= ’0’ after 2 ns;

wait for 5 ns;

wait until CLK’EVENT and CLK = ’1’;

wait for 80 ns;

R <= X”AA” after 2 ns;

G <= X”AA” after 2 ns;

B <= X”AA” after 2 ns;
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start <= ’1’;

wait until clk’event and clk = ’1’;

start <= ’0’ after 2 ns;

wait for 5 ns;

wait until CLK’EVENT and CLK = ’1’;

wait for 80 ns;

R <= X”05” after 2 ns;

G <= X”05” after 2 ns;

B <= X”05” after 2 ns;

start <= ’1’;

wait until clk’event and clk = ’1’;

start <= ’0’ after 2 ns;

wait for 5 ns;

wait until CLK’EVENT and CLK = ’1’;

wait for 80 ns;

wait;

end process;

END;

———————————————————— End of test bench ———————————————————————————

The stimuli driver process assigns input values and reads outputs to and from the
unit under test ports using internal signals. As it can be seen in the simulation from
Fig. 1.13, after a reset is applied at the UUT input after 10 ns, first R, G, B input is
feed to the profile computation unit after another 80 ns, at the t0 simulation time. The
luminance information for the current pixel is computed according to Eq. (1.2) and
is given with a 2 clock cycles delay (t1 simulation time). After another 2 clock cycles

t2
t0 t1

Fig. 1.13 Simulation of write operations in the Block RAM memories for the completion of the
image vertical and horizontal profiles
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delay (t2 simulation time), the current memory value is read and the luminance
intensity value is added for the current pixel at the memory location X and Y from the
two Block RAM memories. For the first pixel intensity value, the addresses X and
Y are not incremented (the values are 0 and 0). The address incrementing for the
horizontal profile starts with the second image pixel, and is marked with a rectangle
on the simulation from Fig. 1.13. The address for the vertical image profile is
incremented only after the first line of pixels is feed to the UUT.

The content of the block RAM memories corresponding to the image profiles is
given in the Fig. 1.14, according to the write operations performed in the simulation
from Fig. 1.13. In the memory which corresponds to the vertical profile
(DataRAM_X), each of the three intensity values corresponding to the three R, G, B
inputs is written at the addresses from 0 to 2. In case of the vertical image profile,
each of the three current pixel intensity values from the input are sequentially added
to the content located at the first memory address. In this way, considering the
memory which stores the vertical image profile (DataRAM_Y), the sum of the three
pixel intensity values corresponding to the three sets of R,G,B inputs is found at the
first memory address at the end of the simulations from Fig. 1.13.

1.7 Finite State Machines

A finite state machine (FSM) can be defined as an abstract computation procedure
described by a sequence of steps. The FSM can be in one of a finite number of states at
a given time. Depending on its current state and a sequence of events, the procedure
passes from one state to another (i.e. state transition). Each state is associated with a
set of operations, and consequently, the finite state machine describes a sequence of
operations depending on the events that occur in each of its finite states [3].

As previous definition underlines, the FSM controls how a sequence of opera-
tions is performed. From the perspective of digital logic, the operations are per-
formed by an execution unit, whereas the timing and the conditions to be fulfilled in
order to activate the execution unit are controlled by the control unit (i.e. con-
troller). The execution is composed of registers, adders, decoders, comparators or
arithmetic logic units (ALU) and it usually performs arithmetic operations, logic
operations, data processing tasks and also interprets control signals and generate
status signals for the control unit. The control unit on the other hand, controls data
movement by disabling and enabling resources, provides signals to activate tasks

DataRAM_X DataRAM_X

Fig. 1.14 Block RAM memory contents corresponding to the image vertical and horizontal
profile, considering the simulation from Fig. 1.12
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for the execution unit, determines the timing (i.e. sequence of operations in time) of
the execution unit operations and also interprets the received signals from the
execution unit and generate signals for the execution unit. An overview of how the
two units interact is given in Fig. 1.15.

Commonly the control unit can be described by a finite state machine. The
digital circuit which implements the functionality of a FSM is composed of the
following components: (i) a state register, (ii) input signals, (iii) a next state logic
function, (iv) the output function and (v) the output signals. The state register is
used to encode all the symbolic states of the FSM. The next state function deter-
mines the new state the FSM transits to from the current state, based on the current
state and the input signals. The output function specifies the output signal values
depending only on the current state or on both current state and input values.

Based on how the output is computed, the FSM are classified asof type Moore or
type Mealy. In case the output depends only on the present state of the FSM, the
FSM is of type Moore, whereas in case the output depends only on the input signals
the FSM is of type Mealy. The logic diagrams for both Moore and Mealy FSM are
presented in Fig. 1.16.

Datapath

(Execution Unit)

Data Inputs

Data Outputs

Control 
Signals

Status
Signals

Controller

(Control Unit)

Control Inputs

Control Outputs

Fig. 1.15 Execution Unit and Control Unit in case of digital systems
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Fig. 1.16 State transitions in case of a simple FSM
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State diagrams for FSM representation

Designing finite state machine commonly starts with a graphic representation of the
FSM states called state diagram. Each state of the FSM is represented as a node
drawn as a circle together with unidirectional arrowed arcs which enter or exit the
state node. Each arc has associated a condition. Thus the arcs mark the transitions
from one state to another in case the arc condition is met. Moreover, the outputs
assignment is represented for each of the FSM states. In case of a Moore FSM, the
outputs assignments are placed inside the circle of the state, whereas in case of a
Mealy FSM, the assignments are placed under the condition of each arc. This
representation, detailed in Fig. 1.17, incorporates all information which character-
izes an FSM state: state name, input, output, next state function (i.e. conditional
transitions) and also the output function. The FSM passes from State A to State B in
case the condition is fulfilled. Once in State B, the output of type Moore is assigned
(Moore_out <= value;) and the FSM passes to one of the next states, depending on
conditions 1.1 and 1.2. In case Condition 1.2 is fulfilled, the Mealy outputs are
assigned based on both the condition 1.2 and the input signals.

For a better understanding an example of a FSM state machine for a memory
controller is presented next. Thus, the input/output ports together with the func-
tionality of a memory controller are described by the logic block from Fig. 1.18a
and the state diagram from Fig. 1.18b, respectively.

The memory controller logic block is characterized by the rw, ready, reset and
clk inputs and also by the outputs oe and we. The reset input signal having the logic
value ‘1’ brings the FSM in the state IDLE. In this state, in case the memory is
ready for a read or write operation (ready = ‘1’), the FSM passes to the Decision
state. In this state, based on the rw input signals, the FSM passes to one of the Read
or Write states, where the oe and we outputs are assigned. Thus, in the state Read,
the oe signals is assigned with ‘0’ logic value, whereas the we signal is assigned to
‘1’ logic value. On the other hand, oe is assigned with ‘1’ logic value and we with
‘0’ logic value in case of the state Write. Once in the Read or Write state, if the
current memory operation is finalized, the ready input marks this with ‘1’ logic
value which brings the FSM in the IDLE state. This means the FSM is ready for
another read or write operation. Having both the input/output ports and the FSM
functionality described, the next step in memory controller implementation is to
write the corresponding VHDL code.

State B
Moore_out <= value

Condition 1

Condition 2 Condition 3

State A

Mealy_out <= value

Fig. 1.17 a Memory
controller logic block and
b its functionality described
by the corresponding FSM
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VHDL code for FSM implementation
Before getting into the FSM description using VHDL, let us consider the

functionality of the FSM detailed in Fig. 1.16. Two types of processes are distin-
guished: (A) one combinational process for the next state logic function and (B) one
combinational process corresponding to the state register and its transitions from
one state to another. The transitions are performed depending on the clk signal.

A - Sequential 
logic process

D Flip 
Flops

CLK
Reset

B – Combinational
 logic process

Combinational 
logic

Input

Current 
State

Next 
State

Moore 
Out

PROCESS (reset, clk)
BEGIN
IF (reset='1') THEN
    current_state <= state0;
elsif (clk'EVENT AND clk='1') then
    current_state <= next_state;
END IF;
END PROCESS;

PROCESS (input, current_state)
BEGIN
CASE current_state IS
WHEN state0 =>
        output <= value;    
        IF (input = ...) THEN
        next_state <= state1;
    ELSE … END IF;
WHEN state2 =>
    output <=value;    
    IF (input = ...) THEN
    next_state <= state2;
    ELSE … END IF;
...
END CASE;
END PROCESS;

Write
oe <= ‘1’
we <=’0'

Decision
oe <= '0'
we <= '0'

Read
oe <= ‘0’
we <=’1'

Memory
ControllerReset

CLK

oe

we

rw

ready

Reset
IDLE

Ready = ‘1’
Ready = ‘1’ Ready = ‘1’

rw = ‘0’ rw = ‘1’

(a)

(b)

Fig. 1.18 VHDL code composed of 2 processes and the corresponding logic diagram for both the
sequential and the combinational logic
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The entity declaration together with the signals declaration for the finite state
machine is presented in the next code sequence. The two processes, the sequential
process A and the combinational process B, which describe the functionality of the
FSM, are defined in the architecture body as detailed in Fig. 1.19.

Before discussing the two processes, we focus on the declarative section of the
FSM architecture. Here, the type state is defined which includes the stated state1,
state2, state3… which correspond to the FSM functionality. Moreover, the signals
current_state and next_state of type state are declared. They are further on used in
both A and B processes. In the sequential process A, current_state is initialized
with state0 upon reset signal and, on risng clock edge the next_state is assigned the
current_state signal value. In the combinational process B, the transitions from all
possible states are specified (e.g. next_state <= state1). The transitions are per-
formed based on the current state and the inputs values (e.g. when state = state 0 /if
(input = value) then /output < = value; next_state <= state1;).

—————————————VHDL code structure for a Moore FSM ———————————————————

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

port (input: in < data_type > ;

reset, clk: in std_logic;

output: out < data_type >);

end fsm;

architecture Behavioral of fsm is

type state is (state0, state1, state2, state3, …);

signal current_state, next_state: state;

begin

process A; – these two process are detailed

process B; – in the next figure

end;

Regarding the FSM description from Fig. 1.18, the output assignment is dis-
cussed next. It can be seen the output depends only on the current_state, and
consequently, we have a Moore FSM. In case the outputs depend also on the circuit
input, the type of the FSM is Mealy. In this case, the output changes in case the
input changes, which leads to the following description of the combinational pro-
cess B:

—————————VHDL code structure for an asynchronous Mealy FSM ————————————

process (input, current_state)

begin

case current_state is

when state0 =>

if (input = …) then
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output <= value;

next_state <= state1;

else … end if;

when state2 =>

…

end case;

end process;

—————————————————————————————————————————————————————————————————

The previous VHDL code describes an asynchronous assignment of the
Mealy FSM outputs. In case the signals are required to be synchronous, the output
is updated depending on the clock signal edges. In order to be able to do this, the
outputs are stored using D flip-flops according to the design from Fig. 1.19. In
order to achieve this, the VHDL code to be used is illustrated next.

Example 1.14—VHDL code structure for a synchronous Mealy FSM

————————————————————————————————————————————————————————————————————

library ieee;

use ieee.std_logic_1164.all;

entity fsm is

port (input: in < data_type > ;

reset, clk: in std_

: out < data_type >);

end fsm;

architecture behavioral of fsm is

type state is (state0, state1, state2, state3, …);

signal current_state, next_state: state;

signal temp: < data_type > ;

begin

process (input, current_state)

begin

case current_state is

when state0 =>

if (input = …) then

temp <= value;

next_state <= state1;

else … end if;

when state2 =>

if (input = …) then

temp <=value;

next_state <= state2;

else … end if;

…

end case;

end process;

1.7 Finite State Machines 45



process (reset, clk)

begin

if (reset = ’1’) then

current_state <= state0;

elsif (clk’event and clk = ’1’) then

output <= temp;

current_state <= next_state;

end if;

end process;

end;

The VHDL code for describing both Moore and Mealy FSM are detailed in the
previous code sections. For the memory controller implementation illustrated in
Fig. 1.18, the corresponding VHDL code is given in Appendix C. The functionality
of the FSM is presented in the Fig. 1.19. The simulation shows how a write
operation and two successive reads are performed. The state transitions from IDLE
to decision and further on from decision to write or read are also illustrated by
visualizing the signal state and its evolution on the time diagram from Fig. 1.20.

Fig. 1.20 Simulation of the memory controller functionality
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Fig. 1.19 Mealy FSM with synchronous outputs assignment
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1.8 Methodology for Digital Design with VHDL

In the introductory section we have seen how different abstraction levels can be
used in describing digital systems. Moreover, a general view on designing digital
systems has been also discussed. In this context, processes such as synthesis,
physical design, verification and testing have been defined. The current section
presents each of these processes from the perspective of a designer which makes
use of the VHDL language to build digital systems.

Let us consider a specific algorithm composed of a sequence of steps applied on
our input data, which lead to the corresponding outputs, or in other words to the
expected results. Our aim is to implement this algorithm using digital logic. The
tools available to achieve this task are the VHDL language, a target FPGA together
with the specific software packages used to perform the synthesis. Using the VHDL
language constructs, the functionality of our algorithm is described using inputs,
behavioral or structural descriptions and finally the expected outputs. By synthesis,
we understand the process of describing the functionality of our VHDL code, using
components from different abstraction levels. Thus, in case of the register transfer
level, the algorithm is described using arithmetic logic units, registers and finite
state machines; in case of the gate-level abstraction, a more in-depth description of
the algorithm is generated, using logic gates, flip-flops and parameters such as
propagation delays; in case of the lowest abstraction level (i.e. transistor level) the
description is done using components such as transistors, resistors and signals
represented as voltages.

The methodology of digital design with VHDL starts with (1) the problem
definition step, where all the inputs and outputs of our system are defined within the
port declaration section of our VHDL code (see Fig. 1.21).

Further on, (2) the behavioral description of the digital logic intended to
implement our algorithm is described using VHDL language constructs. The next
step is (3) the test-bench description, which delivers stimuli to our digital logic and
reads the corresponding outputs in order to verify the functionality of our algorithm
implementation. Thus, using the test-bench description the first (4) simulation of the
VHDL code is performed. Note that the simulation tool takes as input our VHDL
code description and generates the register-transfer level components of our design.
In case the simulation results are as expected, we proceed to the next step (5) called
synthesis. There are 3 type of synthesis performed on the VHDL description: a)
RTL (Register Transfer Level) synthesis, b) logic synthesis and c) technology
mapping. They all generate structural netlist files. In case of the first two synthesis
steps a) and b), different libraries are used to create structural descriptions of the
digital logic using RTL components (e.g. registers, arithmetic logic units) and gate
level components (e.g. logic gates, flip-flops), respectively. In case of the third
synthesis step, technology dependent libraries (each target device with different
libraries) are used to associate components commonly referred as cells to the netlist
description. The resulted netlist is called cell-level netlist and is specific for each
technology (i.e. ASIC or FPGA device family). At the end of the technology
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mapping synthesis step, the timing constraints definitions are also available together
with the cell-netlist, which may be used for the post-map simulation procedure (6).
In case the simulation results meet the expectations, placement and routing is
performed, which generates a file for configuring the target device, step (9).
Placement and routing delivers also a timing constraints definition file according to
target device specification which may be used for a post place and route simulation
to verify the design functionality.

1.9 Conclusions

This chapter summarizes the main language constructs together with the method-
ology to be used for designing digital circuits and systems with VHDL. Detailed
examples are provided for the exemplification of important aspects in digital logic
design such as: sequential and combinational logic, structural and behavioral
description and finite state machines. Moreover, the benefits of VHDL in testing
digital logic by means of test-bench-based simulations are also exploited in case of
different hardware architecture such as the architecture for image profile compu-
tation. The main differences between the VHDL code for synthesis and the VHDL
code for writing test-benches are also underlined. To sum up, this first chapter
provides all the necessary information for starting digital logic design with VHDL.

Problem definition
inputs / outputs

Behavioral 
description

Test-bench description
(VHDL file)

Register transfer level 
description (VHDL file) Simulation

Synthesis
a) RTL Synthesis

b) Logic Synthesis
c) Technology Maping 

1 2 3

4

5
Timing 

constraints file

Cell-level 
Netlist file

Simulation6

Placement and routing

Configuration file (.bit)

Simulation8

Programming target 
FPGA device

9

7

Fig. 1.21 Methodology for digital logic design with VHDL
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Appendix A

Operators for predefined VHDL data types

Operator Data type of a Data type of b Resulted data
type

Description

a + b integer integer integer Addition

a − b Subtraction

a * b Multiplication

a / b Division

a mod b Modulo

a rem b Reminder

a ** b Exponentiation

abs a Absolute value

not a boolean, bit,
bit_vector

boolean, bit,
bit_vector

boolean, bit,
bit_vector

Negation

a sll b bit_vector integer bit_vector Shift-left logical

a srl b Shift-right logical

a sla b Shift-left arithmetic

a srl b Shift-right
arithmetic

a rol b Rotate left

a ror b Rotate right

a = b Any type (same of type for both a
and b)

boolean Equal to

a /= b Not equal to

a < b Scalar or 1-D array boolean Less than

a <= b Less or equal to

a > b Greater than

a > = b Greatenr or equal to

a and b Boolean, bit, bit_vector (all b, and the result are of the
same type)

Logic and

a or b Logic or

a xor b Logic exclusive or

a nand b Logic negative and

a nor b Logic negative or

a xnor b Logic exclusive
negative or
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Appendix B

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Comp_Addr is

PORT

(Xmax : in std_logic_vector (12 downto 0);

Ymax : in std_logic_vector (11 downto 0);

CLK : in STD_LOGIC;

Start : in STD_LOGIC;

Reset: in STD_LOGIC;

R : in STD_LOGIC_VECTOR (7 downto 0);

G : in STD_LOGIC_VECTOR (7 downto 0);

B : in STD_LOGIC_VECTOR (7 downto 0);

DataRAM_X : out std_logic_vector (31 downto 0);

DataRAM_Y : out std_logic_vector (31 downto 0);

X : out std_logic_vector (12 downto 0);

Y : out std_logic_vector (11 downto 0);

done : out STD_LOGIC;

DBG_we : out std_logic;

DBG_sum_x : out std_logic_vector (31 downto 0)

);

end Comp_Addr;

architecture Behavioral of Comp_Addr is

component x_y

PORT ( Xmax : in std_logic_vector (12 downto 0);

Ymax : in std_logic_vector (11 downto 0);

CLK : in STD_LOGIC;

Start : in STD_LOGIC;

Reset: in STD_LOGIC;

X : out STD_LOGIC_VECTOR (12 downto 0);

Y : out STD_LOGIC_VECTOR (11 downto 0);

done: out STD_LOGIC

);

end component;

COMPONENT RGBtoY

PORT(

CLK : IN std_logic;

START : IN std_logic;

R : IN std_logic_vector(7 downto 0);

G : IN std_logic_vector(7 downto 0);

B : IN std_logic_vector(7 downto 0);
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Y : OUT std_logic_vector(7 downto 0);

Done : OUT std_logic

);

END COMPONENT;

component AdderX

PORT ( a_lum : in std_logic_vector(7 downto 0);

b_ram : in std_logic_vector(31 downto 0);

sum_x : out std_logic_vector (31 downto 0)

);

end component;

component AdderYY

PORT ( a_lum : in std_logic_vector(7 downto 0);

b_ram : in std_logic_vector(31 downto 0);

sum_Y : out std_logic_vector (31 downto 0)

);

end component;

component RAM_X

Port (CLK : in STD_LOGIC;

we : in std_logic;

addr : in std_logic_vector(12 downto 0);

data : in std_logic_vector (31 downto 0);

data_out : out std_logic_vector (31 downto 0)

);

end component;

component RAM_Y

Port (CLK : in STD_LOGIC;

we : in std_logic;

addr : in std_logic_vector(11 downto 0);

data : in std_logic_vector (31 downto 0);

data_out : out std_logic_vector (31 downto 0)

);

end component;

signal done_Y_Lum : std_logic;

signal Y_Lum: std_logic_vector(7 downto 0);

signal log_done : STD_LOGIC;

signal data_in : std_logic_vector (31 downto 0);

signal data_in2 : std_logic_vector (31 downto 0);

signal sum_x : std_logic_vector (31 downto 0): = (others => ’0’);

signal sum_y : std_logic_vector (31 downto 0): = (others => ’0’);

signal data_out_mem : std_logic_vector (31 downto 0);

signal data_out_mem2 : std_logic_vector (31 downto 0);

signal X_copy,X_addr : STD_LOGIC_VECTOR (12 downto 0);

signal Y_copy, Y_addr : STD_LOGIC_VECTOR (11 downto 0);

signal done_pipe: std_logic_vector (1 downto 0): = (others => ’0’);

signal read_done_intern : std_logic;
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signal read_done_intern2 : std_logic;

signal we_in : std_logic;

signal we_in2 : std_logic;

signal res : std_logic: = ’0’;

signal init_0 : std_logic_vector (31 downto 0): = (others => ’0’);

begin

uut: RGBtoY PORT MAP (

CLK => CLK,

START => START,

R => R,

G => G,

B => B,

Y => Y_Lum,

Done => done_Y_Lum

);

uut3: x_y PORT MAP (

CLK => CLK,

Xmax => Xmax,

Ymax => Ymax,

Reset => Reset,

start => done_Y_Lum,

X => x_copy,

Y => y_copy,

done => Res

);

uu4: AdderX Port map ( a_lum => Y_Lum,

b_ram => data_out_mem,

sum_x => sum_x

);

uu7: AdderYY Port map ( a_lum => Y_Lum,

b_ram => data_out_mem2,

sum_y => sum_y

);

uut5: RAM_X Port map (CLK => CLK,

we => we_in,

addr => x_copy,

data => data_in,

data_out => data_out_mem

);

uut6: RAM_Y Port map ( CLK => CLK, –done

we => we_in2, –done

addr => y_copy, – done

data => data_in2,

data_out => data_out_mem2 );

X <= x_copy;

Y <= y_copy;
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we_in <= res;

we_in2 <= res;

data_in <= sum_x;

data_in2 <= sum_y;

done <= res;

DBG_we <= we_in;

DBG_sum_x <= sum_x;

DataRAM_X <= data_out_mem;

DataRAM_Y <= data_out_mem2;

end Behavioral;

Appendix C

———————————— FSM for memory controller ———————————————————————————

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity mem_contr is

port( read_write: in std_logic;

ready, clk: in std_logic;

oe, we: out std_logic);

end mem_contr;

architecture FSM of mem_contr is

type tip_stare is (idle, decision, read, write);

signal STATE, NEXT_STATE: tip_stare;

begin

proc_comb: process (STATE, read_write, ready)

begin

case STATE is

when idle => oe <= ’0’; we <= ’0’;

if (ready = ’1’) then

NEXT_STATE <= decision;

else NEXT_STATE <= idle;

end if;

when decision => oe <= ’0’; we <= ’0’;

if (read_write = ’1’) then

NEXT_STATE <= read;

else – read_write = ’0’

NEXT_STATE <= write;

end if;
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when read => oe <= ’1’; we <= ’0’;

if (ready = ’1’) then

NEXT_STATE <= idle;

else – ready = ’0’

NEXT_STATE <= read;

end if;

when write => oe <= ’0’; we <= ’1’;

if (ready = ’1’) then

NEXT_STATE <= idle;

else – ready = ’0’

NEXT_STATE <= write;

end if;

end case;

end process proc_comb;

proc_secv: process (clk)

begin

if reset = ’1’ then

STATE <= IDLE;

else

if (clk’event and clk = ’1’) then

STATE <= NEXT_STATE;

end if;

end if;

end process proc_secv;

end FSM;

———————————— end of FSM for memory controller ————————
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Chapter 2
Hardware Architectures for Channel
Encoding in Information Transmission
Systems

Nowadays, digital representation of any kind of information source is common.
Speech waveforms, image waveforms, text files and any other information sources
are represented as binary sequences. In order to pass the information from source to
destination, the source output, represented as a binary sequence, is further on
converted into a form suitable for transmission over a particular physical media
(e.g. cable, optical fiber etc.). In other words, information transmission systems are
used to pass digital sequences from source to destination trough a particular
physical media defined as the communication channel. Considering the afore-
mentioned principle of digital communications, two fundamental ideas are distin-
guished: communication sources are viewed as digital sequences and
communication channel demand the encoding of the digital sequences in a form
suitable for reliable transmission [1]. Consequently, digital representation of the
information sources is known as source coding, whereas the conversion of the
source digital sequences in a form suitable for the communication channel is called
channel encoding. The present chapter presents introductory sections for both
information transmission systems and channel encoding, followed by hardware
implementations of coder and decoder architectures in case of linear block codes
(i.e. Hamming and cyclic codes).

2.1 Introduction to Information Transmission System

Accurate and timely data, presented in a context that gives it meaning and relevance
can be defined as information [2]. The word information comes from ancient Greek,
and is derived from the words “eidos” (idea) and “morphe” (shape, form). Joining
the two terms suggests that, the mind interpretation of objects generates
information.

With regards to the Information and Communication Technologies (ICT),
information is embedded into a physical form (e.g. electromagnetic wave) in order



to be transmitted through a communication channel. Consequently, in ICT infor-
mation involves an information source S, a destination D and a physical medium
(i.e. transmission channel) that assures the information transmission from S to
D. The information source can be discrete (digital source), or continuous (signal
source). In our case, 0 and 1 symbols are used for information representation, thus
information is discrete and specific for digital communications.

In digital communication, the ensemble of interdependent blocks used to transfer
the information from source to destination is called Information Transmission
System (ITS). As mentioned before, source coding and channel coding are inde-
pendently performed using a binary interface between source and channel. Using
digital sequences for information transmission is specific for digital communica-
tions systems.

The main advantages of digital communication systems are, on one hand, the
possibility of flexible implementation and low cost considering the advent of digital
logic circuits, and, on the other hand, the reliability and the possibility to ensure
information confidentiality [2]. Digital communications come with the disadvan-
tage, the increased bandwidth compared to analogue information transmission
systems. Nevertheless, the disadvantage is diminished due to the existing compu-
tational power and the possibility of data compression.

2.1.1 Modelling an Information Transmission System

The schematic diagram depicted in Fig. 2.1 represent a digital ITS.
The source encoder converts the input signals into a sequence of bits i. For

example, a number of m source messages to be transmitted are coded using n bits
for each source message, where m < 2n−1. The main benefits of this source mes-
sage conversion into a digital sequence are the inexpensive digital hardware and
possibility of source/channel separation.

Source 
Encoder

Channel 
Encoder

Channel

Source 
Decoder

Channel 
Decoder

Binary  interface

S

D
X

i v

N
noise

ri

Fig. 2.1 Schematic model of an ITC for information transmission from sours S to destination D.
The source messages are encoded in binary sequences i, and further on converted into a codeword
v for channel transmission. The channel decoder performs error detection and correction on the
received codeword v
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The transmission channels, especially the electromagnetic field specific for
wireless communication, are susceptible to noise which may alter the signals. The
role of the channel encoder and decoder is presented next, considering noisy
communication channels. To start with, the noise in communication channel is
shortly described. Commonly, a channel model includes an input waveform x(t), a
noise waveform n(t) and the output waveform y(t). In our case, the noise waveform
is considered an additive white Gauss noise (AWGN). The input signal is
characterized by its power P, whereas the communication channel is of bandwidth
B. A characteristic of the communication channel is the signal per noise ratio SNR,
given by the input signal power level compared to the background noise power, as
denoted by n from Eq. (2.1). The SNR is often expressed in dB.

n ¼ y(t)½ �2

n(t)½ �2
; n½dB� ¼ 10 log10 n ð2:1Þ

Considering channel noise levels, Shannon defined the maximum decision rate
Dmax [bits/s] that can be error free transmitted through an AWGN communication
channel of bandwidth B. By decision rate we understand the number of bits per
second delivered by the channel encoder block. Consequently, the channel capacity
C is given by Eq. (2.2).

C ¼ B log2ð1þ
P
N
Þ ¼ B log2ð1þ

P
BN0

Þ ð2:2Þ

where N is the noise power and N0 is the noise power per unit bandwidth. The
channel capacity as previously defined represents a theoretical limit impossible to
be reached in real transmission systems. Nevertheless, state-of-the-art channel
coding schemes together with remarkable computational power offered by digital
hardware such as GPU or FPGA allow to closely approach this channel capacity,
whereas high-throughput is also delivered. A classic channel coding scheme is
detailed further on.

The channel coding, i.e., the channel encoder and the channel decoder, converts
the information i into a codeword v, which is transmitted to the channel. At des-
tination, the channel decoder block receives the codeword r, and decodes the
sequence of information bits i’. These conversions are performed in order to ensure
a high degree of accuracy at destination, in spite of the noisy transmission channels.
In other words, redundant bits are added by the channel encoder to the information
bits i and the codeword v is obtained. Based on the added redundant bits, the
decoder performs error detection and correction of the information bits. A more
detail description of error control using channel encoding is presented in the next
section.
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2.2 Introduction to Channel Encoding for Error Control

When information transmission is performed through a noisy communication
channel, the signal carrying the information is susceptible to alterations due to the
channel noise. Nowadays, considering the high impact of communication in eco-
nomic and social life, data transmission requires increased reliability, high speed
and increased throughput. Thus, protection against channel noise is considered in
order to eliminate this unwanted effect. The error protection is performed through
channel coding. The history of error control coding starts in mid 20th century and
began with Hamming codes and reached to more powerful error correction codes
such as low density parity check codes (LDPC) or turbo-codes, trying to limit
technically errors effect in applications. The solution for achieving error protection
while transmitting information was proposed by C. E. Shannon is known as
Shannon second theorem namely noisy channels coding theorem [3].

Basically, the theorem proves that on a noisy channel having the capacity C, a
real time transmission with D bit rate and an error probability P(E) as small as
wanted, using uniform codes of length n, such that: P Eð Þ� 2�n�eðDÞ (e(D) is a
positive function of D, completely determined by channel characteristics). This
means an error probability P(E) however small can be obtained in two ways: by
increasing D which lead to inefficient channel usage and by using large codewords
by adding redundant bits [2]. The last approach is used in practice for error control
codes for data transmission over noisy channels. The strategies for error control in
data transmission are classified as follows: (i) error detection which informs the
transmitter about the need for retransmission of erroneous data (ARQ—automatic
repeat request); (ii) forward error correction (FEC) in which case the channel
coding approach automatically corrects an amount of errors at the receiver side;
(iii) error correction and detection which involves error correction through coding
according to error correction code capacity and repeat transmission for the rest of
erroneous combinations (e.g. radio transmissions). To conclude, error detection and
correction is achieved by channel encoding.

2.2.1 Representation of Error Control Codes

The representations used for binary code sequences can be classified as matrix,
vector, polynomial and geometrical representations described as follows:

• matrix representation implies all the code words are stored in matrix, excepting
the zero components; let m be the number of codewords and n be the length of
one codeword, than the whole code may be stored in the next matrix
(aij 2 f0; 1g):

58 2 Hardware Architectures for Channel Encoding …



C ¼
a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

2
664

3
775
)
)
. . .
)

v1
v2

vm

ð2:3Þ

• vector representation of codes considers each code word of length n as a n—
length vector from the vector space Vn. In other words each sequence of length
n is represented by a vector as shown below:

v ¼ a1 a2 . . . anð Þ; ð2:4Þ

where ai 2 f0; 1g for binary codes.
• polynomial representation of a length n codeword v is made through a poly-

nomial of degree n and unknown x, for which the coefficients are represented by
the codeword bits ai. Polynomial representation example:

v(x) ¼ an�1xn�1 þ an�2xn�2 þ ...þ a1xþ a0 ð2:5Þ

• geometric representation implies that the code words of length n are represented
as points which defines the peaks of a geometrical shape, in a n-dimensional
space; the main benefit is that the representation allows using a series of well
known proprieties of geometric figures to the codes.

Within the current chapter, vector representation and polynomial representation
of codes will be used in case of Hamming codes and cyclic codes respectively.

2.2.2 Classification of Error Control Codes

Considering the nature of the processed information, the error control codes used to
detect, to correct or for both error correction and detection can be classified as:

• block codes in which case, the information at the encoder input is divided into
blocks of m symbols/bits to which the encoder adds k control symbols resulting
in an n = m + k length codeword.

• convolutional codes in which case the information bits are processed in a
continuous way; e.g. an n bits codeword is coded into another n bits codeword
based on the coding relations.

Taking into account the types of the error propagated through the communica-
tion channel, the error control codes are:

• codes for independents error correction;
• codes for burst error correction;
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Based on the possibility of having or not, the information and control symbols
positions well defined in a codeword, the error control codes can be classified in:

• systematic codes for which both the information bits i and the control bits
c positions are clearly defined;

• non-systematic codes in which case the information bits and control bits are not
given in clear considering the codeword structure.

2.2.3 Error Control Codes Parameters

The performances and characteristics of error control codes are illustrated by a set
of parameters which are further on detailed. Let us consider the codeword length
given by parameter n and the number of information bits is m and the control bits
k in case the information bits and control bits are separable.

Redundancy (R), as shown in Shannon second theorem, is used to achieve error
protection by adding supplementary bits for error detection or correction.
Depending on the type of error control codes (i.e. separable or non-separable
corresponding to the possibility to separate the redundant bits from information bits
or not) the redundancy is computed as presented bellow.

For separable codes, redundancy is given by:

R ¼ k
n
; ð2:6Þ

whereas for non-separable codes,

Rr ¼ log2 total no: of nlength sequencesð Þ � log2 no: of codewordsð Þ
log2 total number of nlength sequencesð Þ ð2:7Þ

Detection/correction capacity (Cd/Cs) represents the ration between the number
of detectable/correctable erroneous sequences and the total number of erroneous
sequences.

Code distance (d) is a parameter indicating the capacity of the code to detect and
correct errors. The relation between the code distance and the error
detection/correction capability are demonstrated in [4].

Let us first define the Hamming weight w of a codeword v by the number of
non-zero symbols of the respective codeword. Moreover, let vi and vj be the two
codewords for which the hamming distance is intended to be computed. The d(vi,vj)
is defined by the number of positions for which vi and vj differ, and denotes the

hamming distance: d vi; vj
� � ¼:

Pn
k¼1

aki � akj where vi ¼ (a1i; a2i; . . .; aniÞ, vj ¼
ða1j; a2j; . . .; anjÞ and � is modulo 2 summation.
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As referred to the error correction capability related to the hamming distance, the
necessary and sufficient condition for a code to correct maximum t errors is
d� 2tþ 1. Considering the error detection capacity, the necessary and sufficient
condition for a coded to detect maximum e errors is d� eþ 1. The necessary and
sufficient condition for a code to simultaneously correct maximum t errors and
detect maximum e errors is d� tþ eþ 1; e[ t [2].

2.3 Block Codes

Considering a block code, information from a binary source is divided into m-bits
blocks representing the information bits i. For each information symbols m we add
k control symbols according to a coding rule. The result is a codeword v of length n,
according to Eq. (2.8).

n ¼ mþ k ð2:8Þ

Considering such a structure, the number of resulted codewords is given by M,
with M ¼ 2m. Let Vn (dimension n) denote the space of vectors containing all the
codewords of n bits (with coefficients in Galois Field GF(2)). In case 2m codewords
form a vector space of dimension m which is a subspace C of the space Vn, we call
the block code linear, and the linear block code is denoted by the pair (n, m). Such
linear structures are very important for the practical applications for the block
codes. Another interpretation of the block codes linearity is that, a block code is
linear if and only if the modulo 2 sum of two code words is also a code word. It
follows that the vector space of dimension n, Vn containing the set of distinct
combinations that can be generated with n bits (2n) is divided into two distinct sets:

C—the set of code-words,
F ¼ Vn � C—the set of false code-words.
The linear block codes were invented after Shannon gave his second theorem

(1948). Thus, R. Hamming and Golay introduced the systematic liner codes (1950),
whereas the unified theory for linear codes was documented in 1960. Many prac-
tical applications in information theory and coding were developed since, which
make use of linear block codes [5]. Further on, Hamming codes and cyclic codes
are exemplified, but first the coding equations are detailed.

2.3.1 Coding Equations

As mentioned before, the linear code C(n,m) is an m-dimensional subspace of Vn.
Consequently, the entire set of codewords can be generated by the linear combi-
nations of the m linear independent vectors belonging to C. Let the set of linear
independent code vectors be denoted by gi; i ¼ 1;m. This set of vectors can be
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written as the matrix from Eq. (2.9) and represents the code generating matrix
G[mxn].

G ¼
g11 g12 . . . g1n
g21 g22 . . . g2n
. . . . . . . . . . . .
gm1 gm2 . . . gmn

2
664

3
775
)
)
. . .
)

g1
g2

gm

2
664

3
775 ð2:9Þ

where gij are binary symbols.
The encoding equation is given by:

v ¼ iG ¼ i1i2. . .im½ �
g1
g2

gm

2
664

3
775 ¼ i1g1 þ i2g2 þ . . .þ ingn ð2:10Þ

In order to obtain a systematic structure of the codeword v, denoted by v0 ¼
i½ c� the generating matrix G must have the canonical form:

G0 ¼ ImP½ � ð2:11Þ

where Im, is the unit matrix of order m.
The m information symbols are found unchanged in the codeword v structure

and that the k control symbols are linear combinations of information symbols. Let
ci be the k control symbols and ij the m information symbols. The control symbols
are computed based on the information bits, according to the fi functions as shown
by Eq. (2.12).

ci ¼ fiðijÞ; i ¼ 1; k; j ¼ 1;m ð2:12Þ

Equation (2.12) are known as the parity check equations. Considering the binary
vector spaces properties [6], if we have a space C of dimension m, then always
exists an orthogonal space C* included in the vector space C such that a codeword
v2C is orthogonal in C*. The linear independent k vectors belonging to the
orthogonal space C* can be put in a matrix H[kxn] named the parity check matrix.

The spaces C and C* being two orthogonal spaces means that the two matrices
G and H are also orthogonal, as expressed by Eq. (2.13).

GHT ¼ HGT ¼ 0 ð2:13Þ

The coding Eq. (2.10), relative to the vector space C* becomes:

HvT ¼ 0 ð2:14Þ
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2.3.2 Decoding Equations

Let us consider the communication channel and from Fig. 2.2. The information bits
i are coded using the channel coder and the codeword v is obtained which is
transmitted through the communication channel. The binary codeword v is affected
by channel noise, and, consequently the error vector e contains “1” values as
additive noise for the bits position. The e vector is unknown at the receiver side.
Thus, the vector r is received which contains errors.

The received codeword represented by the binary vector r is given by Eq. (2.15).

r ¼ vþ e ð2:15Þ

The error vector e indicates the additive errors due to the noise within the
communication channel. The sign + is the modulo 2 summation of the two vectors,
codeword v and the error vector e, respectively.

Considering the matrix representation, the error vector e may be written as:

e ¼ e1 e2 . . . en½ �

where an ei value of “1” means an error at position I, whereas a value of “0” means
an correct bit within the received codeword r. As far as for the decoding equation at
the receiver side, it is based on the syndrome S, as denoted by Eq. (2.16). The
syndrome represents a column matrix with k elements.

HrT ¼ S ð2:16Þ

By replacing r vector we obtain:

Hðvþ eÞT ¼ HeT ¼ S ð2:17Þ
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Fig. 2.2 Channel coder/decoder implementation scheme; blocks of i information bits are coded
and transmitted through the communication channel; the receiver gets the codeword transmitted to
the channel (r) and corrects the errors denoted by e
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Equation (2.17) denotes that the syndrome S depends only on the channel errors.
Consequently, if there are no errors or the errors cannot be detected, the syndrome
S = 0. Meanwhile, if the syndrome S 6¼ 0 then the errors are detected. In case the
error correction is wanted, it is necessary to determine the error position based on
the resulted syndrome. This is the case for the Hamming codes. An example of a
coder/decoder implementation for the Hamming codes is detailed further on.

2.4 Hamming Coder/Decoder Implementations

Hamming codes were introduced after Shannon second theorem by R. Hamming in
1950. In our case, we detail a Hamming group code for the correction of single
errors.

The characteristics of this code are:

• the code length can be determined by:

n ¼ 2k � 1 ð2:18Þ

• the codeword structure is given by the Eq. (2.19), where ai represent the
information symbols and ci represent the control (parity check) symbols;

v ¼ c1c2a3c4a5a6a7c8a9. . .an½ � ð2:19Þ

• the control symbols are placed at positions 2i within the codeword, with
i ¼ 0; k� 1;

• the control matrix H is given by Eq. (2.20), where each column hi expresses in
binary natural code (BN) its position with the less significant bit LSB on the kth

line;

H½k�n� ¼ h1 . . . hi . . . hn½ � ð2:20Þ

The coding relationships are determined using Eq. (2.14). Consequently, the
control symbols are expressed as a linear combination of information symbols, as
expressed by Eq. (2.12).

Regarding the decoding process, having the received codeword r, it verifies the
decoding Eq. (2.16). Thus the S syndrome is determined by Eq. (2.21).

S ¼ h1 . . . hn½ �

0
. . .
ei
. . .
0

2
66664

3
77775
¼ hi ð2:21Þ
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When only one error occurs, the syndrome indicates a binary number hi, cor-
responding to the error position within the codeword r. Thus, using a
binary-decimal conversion, we can determine from the S syndrome the erroneous
position. In case more than one error occurs, a major disadvantage comes up. The
supplementary errors are not detected, whereas the decoder introduces supple-
mentary errors. To deal with the aforementioned disadvantage, modified Hamming
codes are available (extended or shortened Hamming codes) which allow supple-
mentary errors detection or correction.

Following the aforementioned descriptions for coding and decoding processes,
hardware architectures are built both for the coder and the decoder, in case of a
Hamming (7, 4) group code.

2.4.1 Encoder Implementation

The Hamming (7, 4) codeword structure is presented as follows:

v ¼ c1 c2 a3 c4 a5 a6 a7½ � ð2:22Þ

The parity check matrix H and the encoding equations are denoted by the
Eq. (2.23).

H ¼
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

2
64

3
75

H � vT ¼ 0

ð2:23Þ

The control symbols are expressed as a linear combination of information
symbols according to the following set of equations:

c1 ¼ a3 þ a5 þ a7
c2 ¼ a3 þ a6 þ a7
c4 ¼ a5 þ a6 þ a7

ð2:24Þ

Example 2.1 Hardware architecture for the Hamming encoder
The hardware architecture corresponding to the Hamming encoder is described in
Fig. 2.3a. The main components are: a shift register with parallel load for each
codeword; three adders for calculating the parity check bits c1, c2 and c4. According
to the equations set (21), the control bits are calculated and loaded into the shift
register RD in the corresponding positions: 1, 2 and 4. In this manner, the code
word v is formed using the shift register RD.
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The logic block for the Hamming encoder intuitively called Hamming is illus-
trated in Fig. 2.3b. The Hamming logic block has a 4 bits input representing the
information bits and an output of 7 bits for the codeword resulted after encoding.
The corresponding VHDL code for the entity associated with the Hamming encoder
is presented next:

———————— Entity declaration————————————————————————————————————————————

entity Hamming is

Port ( Clk: IN std_logic;

inf: IN std_logic_vector(3 downto 0);

data_paralel: OUT std_logic_vector (6 downto 0));

END Hamming;

———————— End of entity declaration——————————————————————————————————————

The corresponding VHDL code which describes the Hamming encoder func-
tionality is presented next. A shift register RD with parallel load is used to store the
received codeword. The register is represented by the temp internal signal, whereas
the parallel load operation is performed through the concurrent statement temp
(j) = inf(i). Note that j = {6, 5 4, 2}, the position of information bits, whereas i = 0
to 3. The 7 bits output is also assigned in a concurrent manner to the temp register
output (e.g. data_parallel <= temp). In order for the temp signal to represent a
register within the behavioral architecture, the control bits are computed by xor
operator and assigned on the rising edge of the clk input, on the positions 0, 1, and 3
(e.g. temp(0) <=inf(3) xor inf(0) xor inf(1);).

————————— Behavioral description of the Hamming encoder ——————————————

architecture Behavioral of Hamming is

`

v

1c

2c

4c

7a6a5a3a

RD

Hamming

inf 4
v

7

CLK

(a)

(b)

Fig. 2.3 a Hamming coder implementation using shift register RD, b logic block for the
Hamming encoder (inputs/outputs)
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signal temp: std_logic_vector (6 downto 0);

begin

process (clk)

begin

if clk’event and clk = ‘1’ then

temp(3) <=inf(1) xor inf(2) xor inf(3);

temp(1) <=inf(0) xor inf(2) xor inf(3);

temp(0) <=inf(3) xor inf(0) xor inf(1);

end if;

end process;

data_paralel <= temp;

temp(6) <=inf(3); temp(5) <=inf(2);

temp(4) <=inf(1); temp(2) <=inf(0);

end Behavioral;

———————————End of behavioral description of the Hamming encoder ————————

Figure 2.4 illustrates the parallel load of the input (i.e. the information bits inf)
into the shift register RD at simulation time t0 and t2. The resulted codewords after
adding the control bits are underlined at simulation time t1 and t3 as underlined in
Fig. 2.4.

Example 2.2—Hardware architecture for the Hamming decoder
The Hamming decoder receives the codeword r through the communication
channel. In case of the Hamming (7, 4) code, the error prone received codeword is
denoted by Eq. (2.25).

r ¼ r1r2r3r4r5r6r7½ � ð2:25Þ
Taking into account Eq. (2.14), the Hamming decoder corrects or detects the

transmission errors based on the syndrome S. The following cases are distinguished
based on the S syndrome values:

Parallel load for the information bits

Resulted codeword

t0

t1

t2

t3
Control bits

LSB    MSB

Fig. 2.4 a Simulation of the Hamming encoder; the resulted codewords corresponding to the
information bits bx0101 and bx1101are underlined

2.4 Hamming Coder/Decoder Implementations 67



• S ¼ 0 meaning there are no errors or the errors are not detected;
• S 6¼ 0 meaning the error is found at the position given by the binary repre-

sentation of the syndrome S (e.g. the syndrome S = [011] denotes an error on
the 3rd position within the received codeword r).

The hardware architecture for the Hamming decoder based on syndrome
decoding is described in Fig. 2.5a. The main components are: a shift register where
the received codeword is loaded in parallel, three adders for computing the syn-
drome bits (S = [s1, s2, s3]), a binary to decimal decoder (i.e. BD decoder) for
computing the position of the erroneous bit. Once the received codeword r is loaded
in the shift register, the syndrome S is computed. Further on, the computed binary
value of the S syndrome is decoded into a 7 bits binary vector e, which marks the
position of the erroneous bit. The received codeword r is corrected by adding “1”
logic value to the position specified by the BD decoder. Thus, the corrected
codeword is denoted by Eq. (2.26).

v	 ¼ rþ e ð2:26Þ

The logic block for the Hamming decoder is illustrated in Fig. 2.5b. It has a 7
bits input y_in representing the received codeword through the communication
channel and an output of 7 bits (y_out) for the corrected codeword resulted after
decoding process. There are also the clock signal clk and the reset input reset
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Fig. 2.5 a Block diagram for the Hamming decoder composed of a shift register, adders and
binary to decimal decoder (BD decoder), b the black-bocx corresponding to the Hamming decoder
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available for the Hamming decoder. The corresponding VHDL code for the entity
associated with the Hamming decoder is presented next:

———————— Entity declaration————————————————————————————————————————————

entity decoder is

Port ( clk: in std_logic;

reset : in std_logic;

v_in: in std_logic_vector(0 to 6);

v_out: out std_logic_vector(0 to 6)

);

end decoder;

———————— End of entity declaration——————————————————————————————————————

The functionality of the Hamming decoder is described within its behavioral
description detailed in the next VHDL code section. There are two processes
describing the functionality of the decoder (lines 5 and 13) together with two
concurrent assignments (lines 33 and 34). The signal temp2 is used within the first
process to build a register which stores the syndrome S = [s1 s2 s3]. The values for
the syndrome bits s1, s2 and s3 are computed and stored in temp2(i) register cells,
according to the code lines 8, 9 and 10. The second sequential process, computes
the error vector err which specifies the position of the erroneous bit, based on the
syndrome S. Further on, the concurrent assignments corresponding to the code lines
33 and 34 perform the correction of the codeword v_in by adding the error vector
err to the temp1 register. It is to be mentioned that, the temp1 registers store the
input codeword v_in. Consequently, the last assignment (line 34) delivers the
corrected codeword to the decoder output v_out.

1: architecture Behavioral of decoder is

2: signal temp1: std_logic_vector(0 to 6);

3: signal temp2: std_logic_vector(0 to 2);

4: signal err: std_logic_vector(0 to 6);

4: begin

5: process (clk)

6: begin

7: if clk’event and clk = ‘1’ then

8: temp2(0) <=v_in(3) xor v_in(4) xor v_in(5) xor v_in(6);

9: temp2(1) <=v_in(1) xor v_in(2) xor v_in(5) xor v_in(6);

10: temp2(2) <=v_in(6) xor v_in(4) xor v_in(2) xor v_in(0);

11: end if;

12: end process;
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13: process (clk)

14: begin

15: if ( clk’event and clk = ‘1’) then

16: if ( reset = ‘1’) then

17: err <= ”0000000”;

18: else

19: case temp2 is

20: when ”000” => err <= ”0000000”;

21: when ”001” => err <= ”0000001”;

22: when ”010” => err <= ”0000010”;

23: when ”011” => err <= ”0000100”;

24: when ”100” => err <= ”0001000”;

25: when ”101” => err <= ”0010000”;

26: when ”110” => err <= ”0100000”;

27: when ”111” => err <= ”1000000”;

28: when others => err <= ”0000000”;

29: end case;

30: end if;

31: end if;

32: end process;

33: temp1 <= v_in;

34: v_out <= err XOR temp1;

35: end Behavioral;

The simulation of the Hamming decoder implementation is presented in Fig. 2.6,
where three different situations of the decoding operation mode are underlined. At
the simulation time t0, the decoder input got no errors and consequently, the
resulted err signal is err = ‘0000000’. At the simulation time t1, there is a unique
error in the v_in codeword, which is corrected using the err vector err = ‘0001000’
at the simulation time t2. The last simulation time t3 corresponds to an input code
word v_in having two errors; in this case the decoder introduces an additional error
to the output signal v_out.

t0 t1 t3t2

Fig. 2.6 Simulation of the Hamming decoder implementation; the erroneous positions are marked
with rectangular areas
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2.5 Cyclic Codes Principles

Cyclic codes are a well known subset of the linear block codes commonly used in
practice, considering the simplicity of their implementation. The implementation is
performed using linear feedback shift registers.

Cyclic codes were first studied by E. Prange in 1957, whereas in 1960 multiple
error correction cyclic codes were introduced as BCH codes by R. Rose and
P. Chauduri. Moreover, non-binary cyclic codes known as Reed—Solomon codes
were proposed in 1960.

Definition
A cyclic code is a linear block code if any cyclic permutation of a codeword is also
a codeword. In other words, if a codeword v = (a0 a1 … an) is included in the set of
codewords C, than any cyclic permutation of v (i.e. v(1) = (an a0 … an-1) …
v(i) = (an-i an-i-1 …an-1 a0 a1 … an-i+1)) is still a codeword.

Further on, the polynomial representation of the codes is used for describing the
cyclic codes coding and decoding processes. Let i = (i0…im-1) be the information
bits. Thus, the information polynomial i(x) of degree m-1 detailed in Eq. (2.27)
describes the information bits.

i xð Þ ¼ i0 þ i1xþ . . .þ im�1xm�1 ð2:27Þ

The codewords of size n are chosen as polynomials multiples of a k = n-m
degree polynomial known as the code generator polynomial g(x) (see Eq. 2.28).

g xð Þ ¼ g0 þ g1xþ . . .þ gkx
k; gk ¼ g0 ¼ 1 ð2:28Þ

Consequently the coding equation is given by:

v xð Þ ¼ i(x)g(x) ð2:29Þ

In the current chapter, we will focus on the binary cyclic codes. For binary
codes, considering the c(x) polynomial of degree n, the set of modulo 2 residue
classes of c(x) has 2n elements, out of which, 2m elements are considered the
codeword set that are multiples of the generator polynomial g(x).

The codeword formed with the relation (2.29) leads to a non-systematic code-
word structure. In order for the codeword to have a systematic structure, the next
steps are followed as presented in [2].

xki xð Þ ¼ i0xk þ i1xkþ 1 þ . . .þ im�1xn�1

xki(x)
g(x)

¼ q(x)þ r(x)
g(x)

v(x) ¼ xki(x)þ r(x) ¼ q(x)g(x)

¼ a0 þ a1xþ . . .þ ak�1xk�1 þ akxk þ . . .þ an�1xn�1

ð2:30Þ
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Thus, a cyclic codeword multiple of g(x) is obtained, with the information bits
placed on the first m significant positions whereas the control bits are given by the r
(x) polynomial. The r(x) polynomial represents the reminder after the division of xki
(x) with g(x). In [2] the reader may find how an equation similar with HvT = 0 is
obtained for the coding process. Considering h(x) = (xn + 1)/g(x), the H matrix is
defined as denoted by Eq. (2.31).

H½k�n� ¼
0 0 � � � 0 hm hm�1 � � � h1 h0
0 0 � � � hm hm�1 hm�2 � � � h0 0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

hm hm�1 � � � h0 0 0 � � � 0 0

2
6664

3
7775 ð2:31Þ

To sum up, we present next how the cyclic code size is determined, and how to
choose the generator polynomial of degree k in order to correct a number of t errors.

First, the code size is n = 2 k-1, as the cyclic codes are a particular case of linear
block codes described in Sect. 3.1.

Secondly, the g(x) is chosen as a primitive polynomial of degree k, according to
the Table 1 from Annex 2. Moreover, a table with generator polynomials for dif-
ferent codeword sizes n and errors to be corrected t are detailed in Annex 2,
Table 2. Further on, digital circuits for cyclic encoding and decoding are presented
and implemented using VHDL code.

2.6 Cyclic Codes Encoder and Decoder Implementations

The coding and decoding process for the cyclic codes is performed through the
division of xki(x) and r(x) respectively to the g(x) polynomial. Linear feedback shift
registers with external modulo 2 adders are used for the polynomials division
implementation.

The register cells Cj connections to the external adders depend on the charac-
teristic of the generator polynomial g xð Þ ¼ g0 þ g1xþ . . .þ gkx

k; gk ¼ g0 ¼ 1.
The block scheme is presented in the Fig. 2.7.

Ck-1 Ck-2 C1 C0

+

gk=1
g0=1

gk-1 gk-2 g2 g1

Fig. 2.7 Liner feedback shift registers with external adders for the polynomial division with g(x)
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Let the stiCj be the state of the register cell Cj at the moment i. Considering a
matrix description, the functionality of the linear feedback shift registers is
described by Eq. (2.32):

Si ¼ TSi�1 ð2:32Þ

where

Si ¼
stiC0

..

.

stiCk�1

2
64

3
75; Si�1 ¼

sti�1C0

..

.

sti�1Ck�1

2
64

3
75 , and T ¼

0 1 0 . . . 0
0 0 1 . . . 0
..
. ..

. ..
. ..

. ..
.

0 0 0 . . . 1
g0 g1 g2 . . . gk�1

2
66664

3
77775
:

ð2:33Þ

The cyclic encoder can be build based on the previously described linear
feedback shift register. Thus, another modulo 2 adder S2 is introduced together with
a switch K. This leads to the cyclic encoder from Fig. 2.8.

Concerning the decoder implementation, the information bits i = [an-1 an-2 …
an-m] are delivered to the input sequentially during m clock cycle, whereas the
switch K is found at position 1. The encoder output during these first m clock cycles
is the same as the input. After m clock cycles, the switch K is in position 2 for the
next k clock cycles, while the control bits are computed by dividing xki(x) to g(x).
At the output we can find along the m + k clock cycles the v(x) polynomial cor-
responding to the codeword associated with the information symbols from the input
(i.e. v(x) = xki(x) + r(x)). Note that at the end of the n clock cycles, the registers
cells are all 0. The Eq. (2.34) expressing the register functionality is illustrated next.

Si¼TSi�1 + aiU ð2:34Þ

Ck-1 Ck-2 C1 C0

+

gk=1
g0=1

gk-1 gk-2 g2 g1

+

S1

S2

K 1

2 INPUT:
i = [an-1 an-2 ... an-m]

OUTPUT:
v = [an-1 ... a1 a0]

Fig. 2.8 Cyclic encoder with linear feedback shift register and external adders
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where ai is the input signal at the moment i and the U matrix is U = [0 0 … 1]T of
size k. Note that during the k clock cycles while the switch K is on position 2, the
input is 0 logic. This leads to the value 0 for all the register cells at the end of the
n clock cycles (i.e. Sn = 0).

The equality Sn = 0 and the Eq. (2.31) are used to compute the control symbols
based on the information bits (i.e. the encoding equations).

Example 2.3—Hardware architecture for the cyclic encoder implementation
We will present how the encoding relation are determined for a cyclic code C(7,4)
using the generator polynomial g(x) = x3 + x+1. Further on, the relation will be
verified through simulation, using the VHDL implementation of the cyclic encoder
having the same size and the same generator polynomial.

The block scheme for the C(7,4) cyclic encoder is detailed in Fig. 2.9.
The encoder operates according to the Table 2.1. Thus, the initial state of the

register is [C1 C2 C3] = [0 0 0]. For the first m = 4 clock cycles, the switch is on
position 1, meaning the output is the same as the input (i.e. i = [a6 a5 a4 a3]),
whereas the register cells evolve according to the generator polynomial g(x). For the
next k = 3 clock cycles, the switch is on position 2, meaning the output v at

C2 C1 C0

+

+
S2

K 1

2 INPUT:
i = [a6 a5 a4 a3]

OUTPUT:
v = [a6 a5 a4 a3 a2 a1 a0]

Fig. 2.9 Cyclic encoder for the C(7,4) cyclc code with g(x) = x3 + x + 1

Table 2.1 Hardware resource usage for the implementation of 10 hardware architectures for
Canny edge detector aiming parallel microarray spot processing

tn tn+1 tn
T K Input i C2

(0) C1
(0) C0

(0) Output v

1 1 a6 a6 0 0 a6
2 a5 a5 a6 0 a5
3 a4 a4 + a6 a5 a6 a4
4 a3 a3 + a5 + a6 a4 + a6 a5 a3
5 2 0 a3 + a5 + a6 a4 + a6 a2 = a4 + a5 + a6
6 0 0 a3 + a5 + a6 a2 = a3 + a4 + a5
7 0 0 0 a2 = a3 + a5 + a6
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simulation time tn is given by the register cells C1 + C0 from the simulation time tn.
This leads to the coding equations described by Eq. (2.35).

a2 ¼ a4 þ a5 þ a6
a1 ¼ a3 þ a4 þ a5
a0 ¼ a3 þ a5 þ a6

8<
: ð2:35Þ

The VHDL code for the cyclic encoder is described next. The input output ports
are detailed in the entity description as presented next.

———————————— Entity declaration————————————————————————————————————————

1: entity RD1 is

2: Port ( clk: in std_logic;

3: inf: in std_logic;

4: reset: in std_logic;

5: k_switch: in std_logic;

6: data: out std_logic) ;

7: end RD1;

——————————— End of entity declaration———————————————————————————————————

The information bits i are sequentially delivered to the inf input port, which is
connected internally to the first register cell C2. The clk and reset inputs represent
the clock signal input port and the reset port, respectively. The reset port initializes
the register cell C2, C1 and C0 with 0 logic. The data output ports delivers
sequentially each bit of the v codeword. Note that the size of v is 7 in our example
(i.e. C(7, 4) cyclic code). The input port k_switch, as its name reveals, represents the
switch K. This input port is 1 logic for the first 4 clock cycles, meaning the switch K
is on position 1 and the information bits are loaded in the register cells. The next 3
clock cycles the k_switch is 0 logic, meaning the input into the shift register is 0 and
the control symbols are computed and delivered at the data output port.

—————————————— Behavioral description of the cyclic encoder —————————————

8: architecture Behavioral of RD1 is

9: signal temp:STD_LOGIC_VECTOR(2 downto 0);

10: signal outt:std_logic;

11: signal outt2:std_logic;

12: begin

13: process (clk)

14: variable RDin : std_logic;

15: begin

16: if k_switch = ‘1’ then

17: RDin : = inf;

18: else

19: RDin : = ‘0’;

20: end if;
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21: if reset = ‘1’ then temp <= ”000”;

22: elsif clk’event and clk = ‘1’ then

23: temp <= RDin & temp(2 downto 1);

24: end if;

25: end process;

26: outt <=inf;

27: outt2 <=temp(0) xor temp(1);

28: data <= outt when k_switch = ‘1’ else

29: outt2 ;

30: end Behavioral;

———————— The end of the behavioral description of the cyclic encoder ——————

The functionality of the decoder is described by the aforementioned behavioral
description. There is a temp signal declared, which represent the shift register. The
register is instantiated through the sequential process description where register cell
values are instantiated on clock event (code line 22 and 23). On reset (code line 21),
the temp register in initialized with 0 logic values. The variable RDin represents the
input into the first register cell, which is a multiplexed input. In case the k_swith is 1,
the input into the register is the information bits, whereas the k_switch is 0, the input is
0. This multiplexed input is described by the code lines 16 to 20. Outside the process
there are 3 other concurrent statements, code lines 26, 27 and 28. These code lines
connect the output port either to the input through the outtwires in case the k_switch is
1, or to the temp(0) xor temp(1) in case the control bits are computed and the k_switch
is 0 logic. Note that k_switch 1 logic means the switch K is on position 1 and k_switch
0 logic means that the switch K is on position 2, as referred to Fig. 2.9.

Figure 2.10 details the functionality of the cyclic encoder through two examples.
Let us consider two information sequences given by the following information bits:
i1 = [1010] and i2 = [0001] for each of the previously mentioned examples. The
information bits i1 and i2 are sequentially delivered to the encoder starting with

i1 k1 i2 k2
t1 t2

Fig. 2.10 Simulation results for the cyclic encoder for the C(7,4) cyclc code with g
(x) = x3 + x + 1
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simulation time t1 and t2 respectively, according to Fig. 2.10. After 4 clock cycles,
the number of k = 3 control bits are delivered to the output for the next 3 clock
cycles. Consequently, the codewords delivered by the encoder at the output cor-
responding to the two information bits sequences are v1 = [1010110] and
v2 = [0001011].

2.6.1 Cyclic Decoder Architectures

Let us consider r to be de received codeword at the decoder side. For error
detection, the non-zero state of the shift register shows that an error occurred during
information transmission. Consequently, the architecture for the decoder is build
based on the encoder, by adding a detector block which specifies if the shift register
state Sn is non-zero. This leads to the logic block for the cyclic decoder illustrated in
Fig. 2.11. During n clock cycles, the decoder detects based on the register state
Sn = [Ck-1 … C0] if there are errors during transmission.

In case error correction is desired, based on the Sn syndrome value, the positions
of the errors within the received codeword r are computed using supplementary n
clock cycles. Thus, during 2n clock cycles the error can be corrected. Detailed
architectures for error correction cyclic decoders are presented in [2].

2.7 Conclusions

The current chapter illustrates how channel coding is used for error protection
through error detection or correction during data transmission. Basic notions for
channel coding such as error control codes representation and parameters are pre-
sented. The chapter continues with the description of linear block codes, namely
hamming and cyclic codes. Once all the necessary information on error control
codes are provided, coder and decoder architectures are presented together with

Ck-1 Ck-2 C1 C0

+

gk=1
g0=1

gk-1 gk-2 g2 g1

INPUT:
r = [rn-1 ... r1 r0]

Detector Sn <> 0

Fig. 2.11 Logic block for the cyclic decoder
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VHDL codes sequences for their implementation. The functionality of the proposed
architectures is shown through simulation. The examples of VHDL code for
encoder and decoder implementation represent the starting point for any other
implementation of coder/decoder architectures.
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Chapter 3
High-Throughput Hardware Architecture
for LDPC Decoders

The error probability considering communication channel such as electromagnetic
wave through space is high. This is why channel encoding for error correction is
commonly used. Powerful error correction codes are available (i.e. low-density
parity check codes LDPC), unfortunately, the more powerful the codes are, the
more computational cost for the decoding at destination increases. Nevertheless,
high performance computing architectures (e.g. graphic processing units, FPGAs)
are available for implementing high-throughput decoders. This chapter focuses on
the implementation of high-throughput LDPC decoders using field programmable
gate array (FPGA) technology.

The present chapter starts with a short introduction LDPC codes in digital
communication and continues with the description of a low complexity belief
propagation based decoding algorithm for LDPC codes. In spite of the iterative
nature of the decoding process, the proposed decoding algorithm provides both
reduced complexity and increased BER performance as compared with the classic
min-sum algorithm generally used for hardware implementations. Linear approxi-
mations of check-nodes update function are used in order to reduce the complexity
of the belief propagation algorithm. Considering the proposed low-complexity
decoding approach, FPGA based hardware architecture is proposed for imple-
menting the decoding algorithm, aiming to increase the decoder throughput. FPGA
technology was chosen for the LDPC decoder implementation, considering its
parallel computation capabilities and its ease of reconfiguration. The obtained
results regarding computational complexity, decoding throughput and BER per-
formances are presented.



3.1 Introduction to LDPC Codes for Digital
Communication

Reduced error probability and high-throughput at destination are mandatory for
high speed networks of nowadays digital communications. The aforementioned
premises are necessary for any efficient information transmission system consid-
ering its accuracy, throughput and computational cost. Thus, the purpose of the
channel coding blocks is two folded. On one hand, they assure reliable transmission
by performing error detection and correction and on the other hand, the channel
encoder and decoder have the function of matching the source to the transmission
channel.

For digital communication systems, the accuracy degree is estimated using the
bit-error-rate (BER) measure, which corresponds to the probability of an erroneous
bit within the received codeword r. One can say BER reflects the transmission
quality. A simple interpretation of the BER is the number of erroneous bits divided
by the total number of bits transferred during the time interval under analysis. BER
is commonly expressed as a percentage representing the likelihood of an erroneous
bit.

Low density parity check (LDPC) codes are a class of linear block codes for
er-ror correction in communication channels. Introduced by Galager in 1962 [1],
LDPC codes offer remarkable performances falling 0.04 dB short of the Shannon
theoretical limit, whereas the complexity of their decoding process grows only
linearly with block length.

Despite their advantages, LDPC codes were forgotten for the next decades, due
to insufficient computational power available for the decoding process. In the last
decade, making use of the increased computational power offered by graphic
processing units, FPGA/ASIC technologies and digital signal processors, LDPC
codes are considered a significant breakthrough in the world of digital communi-
cations. Thus, communication standards like WiMAX for wireless networks and
DVB-S2 for satellite broadcasting services use LDPC codes, taking into account
their remarkable bit error rate (BER) performances. The disadvantage of using
LDPC codes consists in the increased computational time for the iterative decoding
process, due to the high order block lengths (50 kb for the DVB-S2 standard). An
open subject in current research is to improve the LDPC decoder throughput [2, 3].
The state of the art solutions used to overcome the last mentioned disadvantage
involve decoding algorithms parallelization using application specific hardware
architectures. Existing approaches used to increase the decoder throughput are
summarized as follows:

• GPU (Graphic Processing Units) [4–6] exploits data parallelism using multi-
thread capabilities and parallel memory access producing performances for
LDPC implementations comparable with ASIC dedicated decoders [5];
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• ASIC/FPGA technology is used to develop application specific hardware
architectures and processing units in order to parallelize LDPC decoding process
[7, 8];

• The LDPC decoding process is parallelized using Application Specific
Instruction Processors [3].

Further on, the main concepts of LDPC codes together with existing approaches
for implementing the LDPC decoder are presented. An N dimension LDPC code
represents a linear block code whose codeword of length N satisfy a set of M linear
parity-check constraints and its code rate is R = 1-M/N. LDPC codes are defined by
the sparse parity-check matrix H(M,N) composed by 1 and 0 values, each line
specifying one of the parity-check constraints. Thus, each codeword c satisfies the
relation (3.1) where Ht is H transposed.

c � Ht ¼ 0 ð3:1Þ

Using the parity-check matrix H = [Pt I], the generator matrix G for LDPC
codeword is obtained (G = [I P]). The LDPC decoding is characterized by passing
probabilistic messages between two types of nodes, M check-nodes (CN) and
N variable nodes (VN), according to Tanner graph [9], (Fig. 2.1). The messages
transmitted iteratively between the two types of nodes contain both the probabilities
for the node i to be 0 and 1, expressed as a Log-Likelihood Ratio denoted by
Eq. (3.2), where P(yi = 0) denotes the probability of the variable node i to be 0.

LLRi ¼ logðPðyi ¼ 0Þ=Pðyi ¼ 1ÞÞ ð3:2Þ

Each type of nodes collects incoming messages from its complementary nodes
and produces an outgoing message (Fig. 3.1b, c). The message qi,j is sent from VN
to CN and represents the probability for the yi bit from the codeword to be 0 or 1.
The CN sends the ri,j message back to the VN, indicating the probability for the yi
codeword bit to be 0 or 1, considering the parity check constraints. Thus, the LDPC
decoding determines the correct codeword based on the resulted yi bits, after per-
forming iterative updates of the VN and CN nodes.

f0 f3 fjf1

c1c0 c6c5c4c3 cic7

q i,j q i,j

ri,j ci

rj,i

fi

cj y i

Check-M

Var-N

(a) (b) (c)

Fig. 3.1 Tanner graph
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3.2 Decoding Algorithms Description

The open problem in recent research regarding the iterative LDPC decoding
algorithms is to reduce their computation complexity while maintaining the same
decoding efficiency (BER) [10]. The most widely used decoding algorithms are the
belief propagation and min-sum algorithms denoted BP and, respectively, MS.

Belief propagation algorithm

The BP algorithm [11, 12], summarized in Fig. 3.2, starts with the M check nodes
and the N variables nodes initialization. The received codeword sent through the
AWGN channel is yn = sn + wn, with sn the corresponding transmitted sequence
and wn independent Gauss random variables. Thus, the variable nodes are initial-
ized with the a priori log-likelihood ratios of the received codeword yn. Check
nodes (CN) and Variable nodes (VN) updates are performed as described in
Fig. 3.2, taking into account the parity check matrix H and the way of passing the
messages from CN to VN described in Sect. 3.1. The i and j indices are specified by
the position of 1 values from the H matrix rows and, respectively, columns. The
decoded codeword is found after performing all iterations in the variable nodes VN.

Min-sum algorithm

In practice, aiming efficient hardware implementations, a low complexity decoding
algorithm is used for LDPC codes, known as the min-sum (MS). The aforemen-
tioned algorithm replaces the check node update described by Eq. (3.1) by a
minimum function [13, 10]. We denote by x, the most likely vector representing a
code-word such that H·x = 0. The received codeword, sent through an AWGN
channel, to be decoded is yn, while rn represents the a priori log-likelihood ratios of
yn. The m terms check sum evaluated from the hard decisions xm is denoted by rm,
while/rm represents its modulo-2 complement. The decoding algorithm is presented
in Fig. 3.3. Step 1 performs the check-nodes updates; step 2 performs the variable
nodes update, whereas step 3 represents a stop condition in case the correct
codeword is determined before all iterations end. The BER performance of the
aforementioned decoding algorithms can be depicted in Fig. 3.4.

Fig. 3.2 Belief propagation
algorithm
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The MS algorithm brings up low computational complexity for the CN update,
achieved using a minimum function [2, 14]. Its main disadvantage is the increased
bit error rate compared with the BP algorithm used in AWGN communication
channels.

3.3 Low-Complexity Approach for LDPC Decoding
Process

The importance of implementing low-complexity LDPC decoding algorithms
resides in the need of feasible decoder implementations aiming to fulfill the need of
high-throughput and increased bit error rate in digital communication, where
increased amount of information per time unit is requested yearly. Efficient soft
decision decoding algorithms based on density evolution of the belief propagation
are proposed in [8, 15, 16]. Moreover, the construction of the sparse parity check
matrix H can be taken into account [17] in order to achieve efficient decoding.

Min-sum decoding algorithm

Nodes initialisation
xn <= hard decision of yn

    VN: rn <= LLR (yn)
Iterate for k=1,2,...kmax

Step1
    for each CN(m): σm =(∑ xn) mod 2

ymn min = min {|yn’|}
Step2
    for each VN(n): zn=|rn|+∑(σm - σm) ymn min

Step3
  if zn < 0 then xn = xn xor 1

yn <= zn

Fig. 3.3 Min-sum algorithm
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Fig. 3.4 BER performances
of BP and MS algorithms
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Starting from the same belief propagation decoding scheme, in the current section, a
low complexity decoding algorithm LA-BP is presented together with its proposed
high-throughput hardware architecture. Experimental results for both decoding
algorithm and its hardware implementation are compared with the state of the art
approaches and presented in the end of Sect. 3.3. The LDPC decoding algorithms
are simulated within an AWGN communication channel with BPSK modulation as
shown in Fig. 3.5.

LA-BP decoding algorithm

The proposed decoding algorithm LA-BP is based on the original BP algorithm [11,
12], taking into account its increased BER performance. The complexity of the
aforementioned algorithm (section I.B) is given by the iterative update of the check
nodes described by the product from Eq. (3.1), which involves increased compu-
tational time and increased hardware resource usage. Therefore, as presented in
[10], in order to reduce the computational complexity, Eq. (3.1) is written as the
sum denoted by (3.3).

CN ¼
Y

i

signð�kðiÞÞf
X

i

f ð kðiÞj jÞ
 !

ð3:3Þ

where

f ðxÞ ¼ log
ðex þ 1Þ
ðex � 1Þ ð3:4Þ

and

kðiÞ ¼ CNprevðiÞ � VNprevðjÞ;
fj 2 1::N Hðj; iÞj ¼ 1g

�
ð3:5Þ

The
Q
i
signð�kðiÞÞ represents the sign for each check node CN update, while

updating the check nodes values involve f function computation. Aiming an effi-
cient FPGA based hardware implementation of the LDPC decoder, the computation
of f is performed using linear approximations.

LDPC 
coder

In: Channel

AWGN 
(noise)

LDPC 
decoder

Out: 

Modulation 
BPSK

Fig. 3.5 Simulated communication channel
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FPGA based decoder implementation

FPGA technology uses pre-built logic blocks and programmable routing resources
for configuration and for implementing custom hardware functionality. Its main
benefits are the low cost, the short time to market and the ease of reconfiguration.
Moreover, FPGA technology exploits spatial and temporal parallelism aiming
algorithm parallelization for fast processing. These advantages can be used to
implement high throughput LDPC decoder architectures [18, 19]. High throughput
FPGA based implementation for LDPC decoders are used in various applications,
other than wireless communication standards. Thus, a coding scheme for the Gauss
wiretap channel based on LDPC codes is proposed in [20]. FPGA based imple-
mentation for reduced code length LDPC decoders can also be used in order to
correct errors occurred in data storage using flash memories [21]. Efficient hardware
architectures for the LDPC decoders bring up both increased throughput and quality
of audio and video wireless data transmission in applications as the ones presented
in [22] and, respectively, [23]. LDPC codes found also their application in patterned
media storage as shown in [24], where the major contribution is a stop update
criterion for the LDPC decoding algorithm which leads to an increased LDPC
decoder throughput.

The first logic block within the LDPC decoder is the f function computation unit
(FCU). The FPGA hardware implementation for the FCU is based on linear
approximation of the f function Eq. (4) and is efficiently designed according to
algorithmic constraints (fixed point requirements). Thus, a 16 bit (Q4.12) fixed
point representation is used for both the input and output data. The input x repre-
sents the log-likelihood ratios of the received symbols yi, denoted by LLR(yi) = 2�yi/
r2, where r = 1/(2R·10EBN0/10). The f function is calculated in an i = 1…n points
Ai(xi,yi), together with the slope mi for each line described by two adjacent points.
Thus, the f function is represented by n segments, with n = 100 empirically
determined to suit the decoder hardware implementation.

Similar approach which uses approximation over consequent intervals were used
in [25] for check nodes update. The parallel computation capabilities of the state of
the art technologies offer the possibility to increase the number of interval used for
approximation. Our proposed hardware implementation for f function computation
makes use of a LUT based ROM in order to store the Ai and mi values. Thus, as
presented in the next paragraphs, only with the cost of approximately 1 kb of ROM
memory, a significantly increased number of segments can be used for approxi-
mation. Figure 3.6 illustrates the efficiency of both the approach described in [25]
and the proposed one, for approximating the g(x) = log(1 + e−|x|). The maximum
deviation of our proposed approach for g(x) estimation is also represented by the
line marked with squares.

The FCU hardware architecture for f(x) computation is presented in Fig. 3.7. The
f function values Ai(xi,yi) are stored in the “ROM f values” memory. Also the slope
mi for each line described by two adjacent points Ai and Ai+1 is stored in the “ROM
Slope” memory. Thus, the f function is represented by n segments, each of them
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described by the equation of a line with slope mi which passes through the point
Ai(xi, yi). In order to compute the f function for a given value x, we are using
Eq. (3.6).

f ðxÞ ¼ miðx� xiÞþ yi ð3:6Þ

The offset yi and the slope mi are given by the values from the “ROM f values”
and “ROM Slope” respectively at x div n address. The x-xi values are given by x
mod n. It is to be mentioned that for an efficient implementation, n value is chosen
as a power of 2. The next code example illustrates how linear approximations are
used to compute f(x) values.

Example 3.1—Hardware architecture for f(x) computation used in
check-nodes updates
This example describes the computation unit for f(x) denoted by Eq. (3.6) using two
the ROM memories, namely ROM_slope and ROM_fvalues. The input x represents
the log-likelihood ratios of the received symbols yi, denoted by LLR(yi)
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Fig. 3.6 Efficiency
estimation of the proposed
linear approximation
approach compared to the one
presented in [25]
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Fig. 3.7 FCU unit
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LLRðyiÞ ¼ 2yi=r2, where r ¼ 2R10EBN0=10. Considering a code rate of R = 0.35
and the signal/noise ratio levels EBN0 = [4db…8db], f is defined on the range (0…
8) of real numbers.

A fixed point data representation Q(4,12) was chosen for the f function imple-
mentation used for check nodes updates. Thus, fixed point values are delivered as
x = Y(15:0) inputs which have a 4 bits integer part and 12 bits fractional
part. Similarly, the computed f(x) values are represented using the same precision of
12 bits for the fractional part. For each values x, delivered at the input, we determine
the ROM memory location (address) by computing the integer part of the division
x/n (i.e. x div n), where n represents the number of segments used for linear
approximation of function f(x). The content of the ROM_slope and ROM_fvalues at
the computed address (x div n) contain the slope and offset denoted by mi and yi,
respectively, used by Eq. (3.6) to compute the f function value for its argument
x. Considering the Eq. (3.6), the value denoted by (x-xi) remains to be computed in
order to deliver the f(x) value. This (x-xi) value is given by the reminder of the x/n
division, (i.e. x mod n). The content of the ROM_slope and ROM_fvalues used for
linear approximation of f(x), considering a number of n = 128 linear segments is
illustrated in Table 3.1.

The VHDL code for the f(x) computation unit depicted in Fig. 3.8 is presented
next. As detailed in Fig. 3.7, the logic unit is based on two ROM memories. First
the Vhdl code for ROM memory declaration is presented, followed by the VHDL
description of the f(x) unit, which includes as components the two ROM memories
containing the slopes and offsets of the segments used for linear approximations.
Thus, the entity declaration for the ROM memories is as follows:

Table 3.1 ROM_slope and ROM_fvalues memory values for f(x) approxmation

ROM Slope ROM fvalues

ROM
memory
address i

Slope mi

(real
value)

Slope mi (fix
point
representation)

Offset yi
(real
value)

Offset yi (fix
point
representation)

xi

1 4.809702 X”4CF4” 1.505291 X”1815” 0.0625

2 2.806184 X”2CE6” 1.204685 X”1346” 0.125

3 1.983276 X”1FBB” 1.029298 X”1078” 0.1875

4 1.530391 X”187C” 0.905344 X”0E7C” 0.25

128 0.000301 X”0001” 0.000291 X”0001” 0.00029

f(x)
Log_out (15:0) =

= f(x)

log_done
x=Y(15:0)

CLK

START

Fig. 3.8 Logic block for the
ROM based f(x) computation
unit
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——————————————————— Entity declaration—————————————————————————————————

entity ROM_LOG is

Port ( ADDR : in STD_LOGIC_VECTOR (6 downto 0);

LOG_POINT : out STD_LOGIC_VECTOR (15 downto 0);

LOG_SLOPE : out STD_LOGIC_VECTOR (15 downto 0));

end ROM_LOG;

———————————————————— End of entity declaration——————————————————————————

Once the inputs outputs of the ROM memroes are defined using the entity, we
can specify the behavior of the logic unit. In this case, the content of ROM
memories is specified by two constants ROM_LOG and ROM_SLOPE, and ROM
memory content is addressed through the address ADDR, delivered at the input.

————————————————— Behavioral description of ROM Memories————————————————

architecture Behavioral of ROM_LOG is

signal ADDR_INT: integer range 0 to 127: = 0;

type ROM_DATE_LOG is array (0 to 127) of std_logic_vector (15 downto 0);

type ROM_DATE_SLOPE is array (0 to 127) of std_logic_vector(15 downto0);

constant ROM_LOG: ROM_DATE_LOG: =

(“0001100000010101”, ”0001001101000110”, ”0001000001111000”,…

constant ROM_SLOPE: ROM_DATE_SLOPE:=

(“0100110011110100”, “0010110011100110”, “0001111110111011”,…

LOG_POINT <= ROM_LOG (conv_integer(ADDR));

LOG_SLOPE <= ROM_SLOPE(conv_integer(ADDR));

end Behavioral;

It can be noticed there is no clock signal, which means the ROM memories
architectures are fully combinational, as expected.

The f(x) computation is performed trough the logic unit ROM_LOG described
next. With regards to the “black-box” principle for building logic units, the inputs
and outputs of the ROM_LOG are: clk, START, Y representing the inputs and Done,
Log_out representing the outputs. START signalizes the beginning of the compu-
tation, whereas Done marks when the result for the input Y is available at the output.

———————————————— Entity declaration————————————————————————————————————

entity Log_Core is

Port (CLK : in STD_LOGIC;

START: in STD_LOGIC;

Y : in STD_LOGIC_VECTOR (15 downto 0);

Log_out : out STD_LOGIC_VECTOR (15 downto 0);

Done : out STD_LOGIC);

end Log_Core;

——————————————————— End of entity declaration———————————————————————————
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This logic block uses as components the two ROM memories for f(x) compu-
tation. The component declaration is done before the architecture begin, using the
following syntax: component ROM_LOG. The ROM_LOG component instantiation
is performed by the following code line: ROM_LOG_INST: ROM_LOG. The
PIPE_LEVEL constant specifies the number of clock periods used by the archi-
tecture to deliver the result corresponding to its input Y. The signals Y_LOW_DEL,
Y_MULT, LOG_RES, ROM_ADDRESS, LOG_POINT, LOG_SLOPE, Ysig are used
as wires for the interconnections betweens multipliers, adders and ROM memories
used within the f(x) computation unit.

The processes sum_for_result, generate_done and del_addr describe how the
computation unit works. The del_addr process computes the x- xi = x mod n value
used to address the ROM memories. The computed address specifies the ROM
memories contents given by LOG_POINT and LOG_SLOPE used to compute the
output value log_out for the input Y. The generate_done process marks when the
result is available at the output log_out. The actual f(x) computation is performed by
the concurrent statement Y_MULT <= Y_LOW_DEL * LOG_SLOPE and the pro-
cess sum_for_result. Consequently, the final result is given by the LOG_RES signal
wired to the output log_out, and valid once the done_pipe signal marks the end of
the computation.

————————————————— Architecture description—————————————————————————————

architecture Behavioral of Log_Core is

CONSTANT PIPE_LEVEL : integer: = 2;

signal Ysig: std_logic_vector (15 downto 0) : = X“0000”;

signal Y_LOW_DEL: std_logic_vector (8 downto 0): = ‘0’&X“00”;

signal Y_MULT: std_logic_vector (18 downto 0) : = “000”&X“0000”;

signal LOG_RES: std_logic_vector (19 downto 0) : = X“00000”;

signal ROM_ADDRESS: std_logic_vector (6 downto 0): = “0000000”;

signal LOG_POINT : STD_LOGIC_VECTOR (19 downto 0): = X“00000”;

signal LOG_SLOPE : STD_LOGIC_VECTOR (9 downto 0): = “00”&X“00”;

signal done_pipe: std_logic_vector (Pipe_level-1 downto 0): = (others =>0);

component ROM_LOG

Port ( ADDR : in STD_LOGIC_VECTOR (6 downto 0);

LOG_POINT : out STD_LOGIC_VECTOR (19 downto 0);

LOG_SLOPE : out STD_LOGIC_VECTOR (9 downto 0));

end component;

begin

del_addr: process (CLK, Y)

begin

if CLK’EVENT and CLK = ‘1’ then

ROM_ADDRESS <= Y(15 downto 9);

Y_LOW_DEL <= Y(8 downto 0);

end if;

end process del_addr;
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ROM_LOG_INST: ROM_LOG

Port map ( ADDR => ROM_ADDRESS,

LOG_POINT => LOG_POINT,

LOG_SLOPE => LOG_SLOPE);

Y_MULT <= Y_LOW_DEL * LOG_SLOPE;

sum_for_result:process (CLK, Y_MULT, LOG_POINT)

begin

if CLK’EVENT and CLK = ‘1’ then

LOG_RES <= Y_MULT + LOG_POINT;

end if;

end process sum_for_result;

generate_done: process (CLK, START, done_pipe)

begin

IF CLK’EVENT and CLK = ‘1’ then

done_pipe (PIPE_LEVEL - 1 downto 0) <= done_pipe (PIPE_LEVEL – 2

downto 0) & START;

end if;

end process generate_done;

Log_out <= LOG_RES;

Done <= done_pipe (PIPE_LEVEL-1);

end Behavioral;

——————————————————— End of the architecture description—————————————————

The previous VHDL example describes the functionality of the logic block used
for f(x) computation using linear approximations. Further on, the second example
shows how the designed logic unit is integrated using a structural description within
a vhdl test-bench, in order to test its functionality. The test-bench delivers in a
sequential manner input data to the designed logic block and displays the corre-
sponding output signals.

Example 3.2—Test-bench for the f(x) computation unit
The unit (i.e. test-bench) used to test the functionality of the designed logic block
for f(x) computation is called test_log_core. As it can be seen further on, there are
no inputs or outputs defined within the entity corresponding to the proposed
test-bench.

—————————————————— Entity declaration——————————————————————————————————

ENTITY Test_Log_Core IS

END Test_Log_Core;

————————————————— End of entity declaration—————————————————————————————

Within the architecture test-bench, the component representing the logic unit for
f(x) computation is defined, as presented next.
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————————————————————— Architecture description—————————————————————————

ARCHITECTURE behavior OF Test_Log_Core IS

------ Component Declaration for the Unit Under Test (UUT)

COMPONENT Log_Core

PORT(

CLK : IN std_logic;

START: IN std_logic;

Y : IN std_logic_vector(15 downto 0);

Log_out : OUT std_logic_vector(19 downto 0);

Done : OUT std_logic );

END COMPONENT;

The inputs and outputs are defined next as architecture defined signals, which
will be used to deliver inputs and to collect the outputs signals of the designed logic
block for f(x) computation. Consequently, the signals are connected to the logic
block under test when the component associated to the logic bloc is instantiated.
See the following section of VHDL code.

—————————————— Architecture description continued——————————————————————

--Inputs

signal CLK : std_logic : = ‘0’;

signal Y : std_logic_vector(15 downto 0) : = (others => ‘0’);

signal START : std_logic: = ‘0’;

---Outputs

signal Log_out : std_logic_vector(19 downto 0);

signal Done : std_logic;

constant CLK_period: time: = 10 ns;

signal log_res: real;

BEGIN

uut: Log_Core PORT MAP (

CLK => CLK,

START => START,

Y => Y,

Log_out => Log_out,

Done => Done);

CLK_process :process

begin

CLK <= ‘0’;

wait for CLK_period/2;

CLK <= ‘1’;

wait for CLK_period/2;

end process;
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generate_input: process

begin

wait until CLK’EVENT and CLK = ‘1’;

Y <= Y + X“01” after 2 ns;

end process generate_input;

generate_start: process

variable i: integer range 0 to 7 : = 0;

begin

START <=‘0’ after 2 ns;

for i in 0 to 5 loop

wait until CLK’EVENT and CLK = ‘1’;

end loop;

START <=‘1’ after 2 ns;

wait until CLK’EVENT and CLK = ‘1’;

end process generate_start;

END

————————————————— End of the architecture description———————————————————

After the component instantiation, subsequent processes are defined. The
CLK_process generates the clock signal wired to the input of the Log_core com-
ponent. The generate_input process delivers sequential input values Y to the logic
unit for f(x) computation. The generate_start process marks the beginning of the f
(x) computation, whereas the output Done is generated by the computation unit
when there is available data to the Log_out output.

A full pipelined architecture was developed for the proposed implementation to
maximize the processing throughput. This choice reduces the computational time
for the FCU to 1 pixel/clock cycle with an initial 3 clock cycles delay. The sparse
property of the parity matrix and the possibility of parallel update of each variable
node and check nodes offer the possibility to design parallel application specific
hardware architecture for the LDPC decoders.

Our proposed architecture described in Fig. 3.9a makes use of multiple instances
of the FCU unit, for check nodes update. The check nodes and variable nodes
values, fixed point representation, are stored in R3 and R4 parallel access registers,
having the size M and N, respectively. The H matrix values are stored in a
look-up-table, called H matrix LUT. The update of the check-nodes within one of
the decoding iterations is performed as follows. The positions i of one value within
each H line specifies the position of Variable nodes prev (R1) register values used
to update the current check node j. Each accumulator computes both the absolute
value |R2j – R1(i)| and its sign. Multiple instances of the FCU units are used in
order to compute in a parallel manner the f function of their inputs, with the total
cost of TS1, corresponding to the first stage S1 of the check nodes update. In a
similar manner, let TS2 and TS3 be the computational cost for the second and,
respectively the third stage. The total delay path for updating all check nodes within
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one of the decoding iterations is uTclk = TS1 + TS2 + TS3. The variable nodes
updates are also performed based on each column values of the H matrix and the
updated check nodes using vTclk cycles. At the same time, the content of the R2
register is loaded in parallel with the updated check nodes values (R3), and the R1
content is also updated with the newly computed variable nodes from R4. The total
delay path for performing one iteration is T = u+v clock cycles. While performing
the linear approximation corresponding to the stage S1 and the S2 and S3 stages,
the SignCU unit computes the sign for each check node update with no additional
delay path. Results of the proposed architecture in case of an LDPC decoder
implementation are presented in the next section.

The proposed LA-BP approach for implementing the LDPC decoding algorithm,
which makes use of linear approximation for check nodes update function, is
compared in terms of BER efficiency with the existing min-sum and belief
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Fig. 3.9 a Logic block for the ROM based f(x) computation unit. b Logic block for the ROM
based f(x) computation unit
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propagation decoding approaches. All the decoding algorithms are implemented
using C code and simulated within an AWGN communication channel with BPSK
modulation. The LDPC code of size N = 20 and M = 15 with a code rate of
R = 0.35 is used for exemplification. The signal/noise ratio levels considered for
simulation are EB/N0 = [4db…8db] on x axis.

The number of code blocks is 106, with the maximum number of performed
iterations 30. Fixed point representation Q(8.16) was used for nodes values and 100
approximation segments for the function f. Figure 3.10 illustrates the results
obtained by our approach, which are close to the classic belief propagation
decoding, and significantly increased compared with the min-sum (MS) algorithm,
used in hardware implementation.

In order to assess the decoding throughput in case of the proposed decoder
design, an LDPC code of size N = 576 and M = 288 is used for estimation. The
hardware resource usage for the decoder implementation is summarized in the
Table I. Let T = TS1 + TS2 + TS3 + vTclk, be the total delay path for computing the
check nodes and variable nodes within one of the decoding iterations. The data used
in the computational stages S1, S2 and S3 are inter-dependent, thus a pipeline
strategy cannot be used for parallel computing. Nevertheless, the check-nodes
update within one of the iteration are independently computed, thus a group of
cn = 96 check nodes are updated in a concurrent manner.

In the timing diagram from Fig. 3.9b, the resources for parallel computation of
the cn check nodes are listed. The number of iterations considered for the decoding
process is Niterations = 8. In case of our proposed implementation each line of the
parity check matrix contains 6 ‘1’ values, thus the total number of multipliers and
adders for S1 computing stage is 96 � 6 = 576. A fully k = 8 stage pipeline
architecture is designed for computing the whole M = 288 check nodes update.
Each pipeline stage introduces a cost of 1 Tclk clock cycle and they are described as
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Fig. 3.10 Results of the
decoder implementation: BER
versus signal/noise ratio
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follows: ROM memory data read within S1 stage, the multiplication performed
within S1 stage, the addition within S1 stage, two stages corresponding to the S2
additions, ROM memory data read within S3 stage, the multiplication performed
within S3 stage, the addition within S3 stage. Thus a total computational time for
the check nodes update is TS1 + TS2 + TS3 = (k + M/cn)Tclk, = = 11 Tclk, where k is
the initial delay due to the pipeline approach. Considering a 2Tclk computational
time needed for the variable nodes update, the number of clock cycles needed by
the proposed implementation in case of one of the iterations of the decoding
algorithm is computed as follows: T = TS1 + TS2 + TS3 + vTclk, leading to a total
delay path of 13 clock cycles. For the hardware implementation of the proposed
LDPC decoder scheme, the Xilinx FPGA XC71500T was chosen, having a number
of 1600 DSP48E. In this way, 1600 multipliers are available for the computation of
the decoding algorithm. Table 3.2 presents the hardware resource usage in case of
the proposed chip. The aforementioned LDPC code is integrated in the WiMAX
standard, thus a throughput comparison with different implementation is performed
next.

Throughput ¼ M � fclk � R
Niterations � T ð3:7Þ

Considering the 400 MHz clock rate, the throughput of the decoder imple-
mentation achieves 1,028 Gb/s, which is more than 200 Mb/s higher than the
architecture proposed in [2], Table III. Due to the increased BER performances, the
number of iterations can be reduced for an increased throughput.

The decoder throughput depends on the level of parallelism used for
check-nodes updates, the most time consuming operation within the LDPC
decoding process. The most efficient implementations regarding the decoder
throughput are obtained using FPGA/ASIC and ASIP approaches. In case of the
ASIP approach, [26–28] the level of parallelism depends on the number of
microprocessor cores p and registers size n. The microprocessor registers are used
to perform parallel updates for pxk nodes, where a node value representation is on
n/k bits. In case of FPGA based approaches, the level of parallelism for nodes
update is given exclusively by the available FPGA resources. The improvements to
the LDPC decoders, compared to existing approaches, introduced by the proposed
design are presented in Table 3.3.

Table 3.2 Hardware resource usage of the decoder architecture in case of XILINX FPGA
XC71500T

Used resources Available resource

Logic units Number of units Unit size Available units

DSP48E 672 24 � 24 1600

Adders 1728 24b –

LUT based ROM memories 74 1 k x 24b –

Total slice LUTs 784.400 1.139.200
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3.4 Conclusions

In a world of digital communication, the LDPC codes bring up a remarkable
potential regarding high-throughput channel coding for error correction. Min-sum
algorithm is used for efficient hardware implementation for high-throughput LDPC
decoder, due to its decreased computation complexity compared with classical
belief propagation algorithm. The paper proposes low complexity belief propaga-
tion based decoding algorithm which shows increased BER performance compared
to the min-sum (MS) algorithm. Moreover, a novel FPGA based hardware archi-
tecture is proposed for the low complexity decoding algorithm. Thus, the proposed
architecture delivers a throughput up to 1.028 GHz in case of LDPC code size
compliant with the WiMAX standard for wireless communication, overcoming the
existing implementation in terms of throughput and BER performance. LDPC with
reduced codeword are also finding increasing use in applications where reliable and
highly efficient information transfer over bandwidth is required. The proposed
FPGA based implementation for the LDPC decoder is suitable for this kind of
applications due to its parallel computation capabilities, low-cost and ease of
reconfiguration.
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Chapter 4
Hardware Architecture for Edge Detection

Edge detection is a common image processing task which detects the discontinuities
in image brightness. Image brightness discontinuities are more likely to correspond
to the boundaries of objects within the analyzed image. Consequently, edge
detection represents an important image processing tool used in features detection
and extraction. In case automation and high-throughput are needed, hardware
architectures represent a well-known solution for implementing edge detection
algorithms. The present chapter describes an FPGA-based implementation applied
in automatic microarray feature extraction. An overview of an automatic microarray
image processing and acquisitionsystem is provided, followed by a description of
image convolution and its hardware implementation. The architecture for convo-
lution is used to build-up a Canny edge detection filter. The integration of the
proposed filter as co-processor architecture within an automatic image processing
system is performed using a finite-state-machine (FSM) approach.

4.1 Introduction—Microarray Image Processing System

Measurement of gene expression can provide clues about regulatory mechanism,
biochemical pathways and broader cellular function. By gene expression we
understand the transformation of gene’s information into proteins. The informa-
tional pathway in gene expression is: DNA ! mRNA ! protein. The protein
coding information is transmitted by an intermediate molecule called messenger
ribonucleic acid mRNA. This molecule passes from nucleus to cytoplasm carrying
the information to build up proteins [1]. This mRNA acid is a single stranded
molecule from the original DNA and is subject to degradation, so it is transformed
into stable complementary DNA for further examination. Microarray technology is
based on creating DNA microarrays which represents gene specific probes printed



on a glass slide or microchip. The most common use for DNA microarrays is to
measure, simultaneously, the level of gene expression for every gene in a genome
[2]. In this way, the microarray compares genes from normal cells with abnormal or
treated cells, determining and understanding the genes involved in different dis-
eases. The microarray technology is used also in toxicological research and mon-
itoring environmental effects on different genomes.

DNA microarrays which represent gene specific probes arrayed on a matrix such
as a glass slide or microchip. Usually samples from two sources are labeled with
two different fluorescent markers and hybridized on the same array (glass slide).
The hybridization process represents the tendency of 2 single stranded DNA
molecules to bind together. After hybridization, the array is scanned using two light
sources with different wavelengths (red and green) to determine the amount of
labeled sample bound to each spot through hybridization process. The light sources
induce fluorescence in the spots which is captured as a gene expression level by a
scanner and a composite image is produced [3]. The microarray image represents a
collection of microarray spots disposed in a rectangular or hexagonal grid (see
Fig. 4.1). Once the expression levels for each microarray spot are estimated, the
genes differentially expressed within a microarray experiment are determined and
they are named up or down regulated genes. The biologists and medical doctors are
interested in the interpretation of the relative changes in intensities for the same spot
from the sample and reference image, ICy3 and ICy5 respectively. The selection of
differentially expressed genes is done using the fold change value Fc [4], which is
given by the log odd ratio off the spot intensity from the two microarray images,
sample and reference image. A detailed description of microarray image processing
algorithms is presented. The classical flow of processing a microarray image is
generally separated in the following tasks: addressing, segmentation, intensity
extraction and pre-processing to improve image quality and enhance weakly
expressed spots. The first step (i) associates an address to each spot of the image. In
the second one (ii), pixels are classified either as foreground, representing the DNA
spots, or as background. The last step (iii) calculates the intensities of each spot and
also estimates background intensity values. The major tasks of microarray image
processing are to identify the microarray image characteristics including the array

(a) (b)Fig. 4.1 Microarray image
classification considering the
grid layout: a rectangular grid
layout, b hexagonal grid
layout
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layout, spot locations, size and shape, and to estimate spot and background intensity
values. Existing software platforms (Agilent Feature Extraction Software (FE),
GenePix Pro, ScanAlyze) perform the image processing tasks and their results can
be found on the public data repository, in case of various microarray experiments
(Gene Expression Omnibus—GEO data repository).

The steps of a microarray experiment, from gene specific probes to the biologic
interpretation of the results can be summarized as follows: (1) the microscopic plate
(microarray) printing, (2) labeling and hybridization of DNA samples, (3) the
double laser scanning of the microarray printed plate, (4) the acquisition of the
microarray images using a digital camera (5) the image processing algorithms for
microarray spots identification, (6) the extraction of microarray spot parameters and
biologic interpretation of the results.

The steps (1) and (2) require special laboratory conditions, so they cannot be
included in an automatic system for microarray image processing. On the other
hand, steps which have as objectives scanning and analysis of microarray images,
may be included in an automatic system that can be useful for the medical or
military personnel deployed in different locations, or if scientific missions that take
place in areas where access to advanced medical equipment does not exist. Steps
(3) to (6) describe the methods used in the acquisition and processing of microarray
images. They are performed by a bio-information using a microarray scanner
together with a workstation. Nevertheless, the increased number of microarray
applications made the process of estimating the genes expression levels very
important, which leads to the need of an automatic system for r microarray image
acquisition and processing. The aforementioned steps can be replaced by a
“system-on-a-chip” that eliminates the human intervention and which increases the
computation efficiency if algorithms with a high degree of parallelism are
employed. FPGA represent a solution for the hardware implementation of image
processing specific algorithms which eliminates the shortcomings of the existing
software platforms: user intervention, increased computation time and cost. Once
automatic microarray image processing algorithms are developed [5], they can be
used to build hardware architectures which can be integrated at the scanner level. In
this way, gene expression levels are delivered as raw data parameters without the
user-intervention. As mentioned before, image processing automation and its
integration at the microarray scanner level is motivated by the following scenario:
bio-chip technology has multiple applications and its need and use may be com-
pared to the requirement of X-ray radiology in a hospital.

Considering the demand for automation in image processing systems such as
microarray analysis, an example of how to develop hardware architecture for a
simple image processing task (edge detection) is described further on. Once the
hardware architecture is developed for convolution, it is used to build-up a more
complex architecture, namely the Canny edge detector, which is in turn integrated
as a speed-up co-processor in a micro-processor system. The methodology to
integrate the hardware architecture within a microprocessor system is also detailed.
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4.2 Hardware Architecture for Image Convolution

4.2.1 Convolution in Digital Image Processing

Digital images represent a two-dimensional (rectangular) array of pixels, each of the
pixels having a particular value. Consequently, a digital image can be represented
by a function f(x,y), where x and y are the spatial coordinates, and the value of f at
any pairof coordinates is called the intensity of the image at location (x,y).
Computer algorithms are used to perform various operations on digital images; this
process is known as digital image processing. In image processing, various tasks
such as blurring, sharpening, embossing or edge-detection are accomplished using
an operation called convolution. In mathematics, convolution is described as a
function that is the integral or summation of two component functions. Thus, the
convolution of f and g is given by Eq. (4.1).

ðf �gÞðx; yÞ ¼
X1
v¼�1

X1
u¼�1

f ðu; vÞgðx� u; y� vÞ ð4:1Þ

In this formula, f represents the original image, and g represents the convolution
kernel. In practical applications, the kernel is defined over a finite set of points,
according to the image processing task to be applied on the original image. Thus,
considering a two-dimensional kernel of width M = 2w + 1 and height N = 2h + 1,
the Eq. (4.1) becomes:

ðf �gÞðx; yÞ ¼
Xyþ h

v¼�y�h

Xxþw

u¼x�w

f ðu; vÞgðx� u; y� vÞ ð4:2Þ

As an explanation for the equation representing the convolution, the reader can
imagine g as one matrix “sliding” over the image f one pixel at a time. The result
f*g in case of the pixel with coordinates (x,y) is the sum of the element-wise
products of the two matrices. Figure 4.2 shows the convolution of a matrix and a
kernel at (x,y) coordinate. In order to perform the complete convolution, the kernel
is passed over each pixel of the original image. The result of the convolution
represents a filtered version of the original image. There are various types of
filtering performed through convolution with different kernels. These types of filters
are commonly used for image denoising and edge detection.

Gauss filtering is a common first step in edge detection. The filtering is per-
formed through a Gauss smoothing operator, or in other words, a 2-D convolution
operator that is used to ‘blur’ images and remove noise. One such filter is called a
Gauss, because the filter’s kernel is a discrete approximation of the Gauss distri-
bution. A circularly symmetric 2-D Gauss distribution has the form given by
Eq. (4.3), where r is the standard deviation of the Gauss distribution and the mean
µ is 0. Since the image is stored as a collection of discrete pixels we need to
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approximate the Gauss function, before performing the convolution. In practice, the
Gauss kernel is approximated with 0 for more than about three standard deviations
(3r) from the mean µ. Thus, the kernel can be truncated at this point. Equation 4.4
shows a convolution kernel that approximates a Gauss. Figure 4.3a shows the plot
of such 2-D kernel, where the similarity with the Gauss 2-D function from Fig. 4.3b
is obvious.

1 1 1
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1 2 1
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2 1

(a) (b)

(c)

Fig. 4.2 a Convolution of the original image I and a gauss kernel at (x,y) coordinate; (1) the
original image I, (2) Gauss kernel, (3) the location (x,y) from the filtered image, (4) the filtered
image If; b The original image “Lena” together with hat detail in the right-down corner; c the
image “Lena” filtered with a Gauss kernel
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Fig. 4.3 a 2-D representation of a convolution kernel b, 2-D representation of the Gauss function
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Gðx; yÞ ¼ 1
2pr2

e�
x2 þ y2

2r2 ð4:3Þ

1
16

1 2 1
2 4 2
1 2 1

0
@

1
A ð4:4Þ

To conclude, one can say the convolution is used for the implementation of
operators which have as output a linear combination of the intensities of pixels from
the original image. Thus, each pixel of the output image is obtained by superim-
posing an M � N size window on the input image and calculating a linear com-
bination of the pixels in the M � N window.

In case of a Gauss filter, which is generally used as a pre-processing technique in
edge detection and other image processing algorithms, an example of a convolution
kernel is described in Fig. 4.3a. Next paragraphs describe the implementation of a
hardware implementation of image convolution. Through parameterization, the
proposed architecture for convolution is set up to perform a Gauss filter and then
used for the implementation of the Canny edge detectorin microarray images.

4.2.2 Hardware Implementation for Convolution

Once the appropriate kernel is chosen, convolution is applied as spatial filter to
perform various image processing tasks. When computational efficiency is
mandatory (real time applications), performing multiple convolution operations at
the same time is a must. Moreover, for the same convolution operation, multiple
computational steps are considered to be performed at once for efficient compu-
tation. Consequently, developing digital hardware architecture for the convolution
operation represents a solution for efficient computation. Further on the approach
proposed for the hardware implementation of the convolution is detailed.
The VHDL code for the digital logic describing the proposed hardware architec-
tures is also presented next.

The image to be filteredis first stored in a frame buffer memory. LetM � Nbe the
size of the convolution kernel and let width x height be the size of the image. TheM
� N window slides over the whole image and for each displacement thereof, the M
� N pixels intensities values are taken for the calculation of a pixel from the output
image (see Fig. 4.2). The constraints imposed by the memory make it impossible to
acquire these M � N intensity values in one clock period; to overcome this limi-
tation, a local caching operation is performed [7]. Pixels from N-1 lines of the
image together with M pixels from the Nth line are stored using a shift register. This
leads to the diagram shown in Fig. 4.4. Thus, in exchange for moving the M � N
window on the surface of the image, the implementation delivers the input image,
pixel by pixel, to the proposed shift register.
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Once all M(N−1) + M registers cells are filled with pixel intensity values, the
first pixel from the output image can be computed using the window operator (see
Fig. 4.4b). A number of N � M multipliers are used together with an accumulator
to calculate the output pixel value as a linear combination of pixels from the input
image to be filtered. The input image pixels I(i,j) are delivered in a continuous
manner to the hardware architecture; they are inserted in the shift register and the
pixels from the output image O(i,j) are sequentially computed until last pixel from
the input image I(M,N) is feed to the proposed architecture.

Example 4.1—Hardware architecture for Gauss filtering
The special case of the previous architecture which implements a Gauss filter using
a 3 � 3 convolution kernel is designed using VHDL. Timing considerations are
detailed only for the proposed hardware architecture for Gauss filtering. The
methodology for developing the Gauss filter using VHDL language is summarized
as follows: first, using the “black-box” approach, the inputs and outputs of the logic
block for Gauss filter are defined; second, the behavioral description is detailed
using the VHDL code; in order to check if the designed logic block has the
expected functionality, a simulation is performed.

The corresponding “black-box” for the logical block designed to implement the
Gauss convolution is shown in Fig. 4.5. The declaration of such logic block for
Gauss convolution is detailed in the following VHDL code sequence:

—————————————Entity declaration———————————————————————————————————————

ENTITY Gauss_Filter IS

PORT (

START : INstd_logic;

Reset : INstd_logic;

clk : INstd_logic;

enable : OUTstd_logic;

Y : INstd_logic_vector(7 downto 0);

M

W
indow

 
operator

Row buffer (width-M)

Row buffer (width-M)

Output
pixel

Frame
buffer
RAM Row buffer (width-M)

N

w1,1 w1,2

wp,q

wM,N
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wM,N
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I(i,j)
Ii-(M/2-1), j-(N/2-1)

*
Ii, j

*wp,q

*

Ii+(M/2-1), j+(N/2-1)

+
Output
pixel
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Fig. 4.4 Hardware architecture for image convolution composed of a the N shift registers for N-1
image lines and b the window operator
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gauss_ready : OUTstd_logic;

gauss : OUTstd_logic_vector (7 downto 0));

END Gauss_Filter;

—————————————End of entity declaration—————————————————————————————————

The pixel intensity values are denoted by Y and its range between 0 and 255. The
Start signal marks the moment when the input has valid data and also the moment
when processingthe input data Y (pixel intensity values) begins. The enable output
pin marks the moment when the gauss output has valid data. The gauss_ready
output marks the computation end for pixel intensity from the output image. It does
not account if the computation delivers a valid data on gauss output or not.
The VHDL behavioral description of the Gauss filter logic block is presented next:

——————————————— Behavioral description of Gauss Filter —————————————

ARCHITECTURE Behavioral OF Gauss_Filter IS

—————————— constants defining the convolution kernel—————————————————

CONSTANT G_1379: unsigned (7 downto 0): = TO_UNSIGNED(1,8);

CONSTANT G_2468: unsigned (7 downto 0): = TO_UNSIGNED(2,8);

CONSTANT G_5: unsigned (7downto 0): = TO_UNSIGNED(4,8);

CONSTANT N: integer: = 10; --NxN size of the input image

CONSTANT pipe_level: integer: = 3;

————the registers “line_buffer” for the local caching of the input image———

SIGNAL line_buffer1: std_logic_vector(N*9-1 downto 0): = (Others => ‘0’);

SIGNAL line_buffer2: std_logic_vector(N*9-1 downto 0): = (Others => ‘0’);

SIGNAL line_buffer3: std_logic_vector(3*9-1 downto 0): = (Others => ‘0’);

SIGNAL sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,adder1,adder2:

UNSIGNED(23 downto 0);

SIGNAL j: integer range 102 downto 0: = 0;

SIGNAL done_pipe: std_logic_vector(pipe_level-1 downto 0): = (others => ‘0’);

SIGNAL start_wre,temp: std_logic;

SIGNAL y_wre: std_logic_vector(7 downto 0);

Gauss 
Filter

gauss

8

gauss_ready

enable

Y 8

CLK

START

RESET

Fig. 4.5 Logic block for the
Gauss filtering
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BEGIN

gaussian: PROCESS (CLK, reset)

VARIABLE Q1,Q2,Q3: std_logic_vector(8 downto 0);

BEGIN

IF reset = ‘1’ THEN

line_buffer1 <= (others => ‘0’);

line_buffer2 <= (others => ‘0’);

line_buffer3 <= (others => ‘0’);

ELSIF (clk’event and clk = ‘1’) THEN

IF start_wre = ‘1’ THEN

IF start_wre = ‘1’ THEN

Q1: = start_wre & y_wre;

Q2: = line_buffer1(8 downto 0);

Q3: = line_buffer2(8 downto 0);

ELSE

Q1: = “000000000”;Q2: = “000000000”;Q3: = “000000000”;

END IF;

line_buffer1 <= Q1 & line_buffer1(N*9-1 downto 9);

line_buffer2 <= Q2 & line_buffer2(N*9-1 downto 9);

line_buffer3 <= Q3 & line_buffer3(3*9-1 downto 9);

END IF;

IF (line_buffer3(8) = ‘1’) THEN

sum1 <= UNSIGNED(X“00” & line_buffer1(N*9-2 downto N*9-9))*G_1379;

sum2 <=UNSIGNED(X“00”& line_buffer1(N*9-11 downto N*9-18))*G_2468;

sum3 <=UNSIGNED(X“00”& line_buffer1(N*9-20 downto N*9-27))*G_1379;

sum4 <= UNSIGNED(X“00” & line_buffer2(N*9-2 downto N*9-9))*G_2468;

sum5 <=UNSIGNED(X“00” & line_buffer2(N*9-11 downto N*9-18))*G_5;

sum6 <=UNSIGNED(X“00” & line_buffer2(N*9-20 downto N*9-27))*G_2468;

sum7 <=UNSIGNED(X“00” & line_buffer3(3*9-2 downto 3*9-9))*G_1379;

sum8 <= UNSIGNED(X“00” & line_buffer3(2*9-2 downto 2*9-9))*G_2468;

sum9 <=UNSIGNED(X“00” & line_buffer3(9-2 downto 9-9))*G_1379;

adder1 <= sum1+sum2+sum3+sum4+sum5;

adder2 <= adder1+sum6+sum7+sum8+sum9;

ELSIF line_buffer2(N*9-1) = ‘1’ THEN

adder2 <=(others => ‘0’);adder1 <=(others => ‘0’);sum1 <= (

others => ‘0’);sum2 <= (others => ‘0’);sum3 <= (others => ‘0’);sum4 <= (

others => ‘0’);sum5 <= (others => ‘0’);sum6 <= (others => ‘0’);sum7 <= (

others => ‘0’);sum8 <= (others => ‘0’);sum9 <= (others => ‘0’);

END IF;

END IF;

END PROCESS gaussian;
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————— process for the computational pipeline of the window operator ——————

pipeline: PROCESS (CLK, reset)

BEGIN

IF reset = ‘1’ THEN

done_pipe(0) <= ‘0’;

done_pipe(1) <= ‘0’;

done_pipe(2) <= ‘0’;

gauss_ready <= ‘0’;

temp <= ‘0’;

ELSIF (clk’event and clk = ‘1’) THEN

done_pipe(0) <= START_wre;

done_pipe(1) <= done_pipe(0);

done_pipe(2) <= done_pipe(1);

gauss_ready <= done_pipe(2);

temp <=done_pipe(2);

END IF;

END PROCESS pipeline;

———————— counter for the input pixel intensity values Y —————————————

count: PROCESS (CLK, reset)

BEGIN

IF reset = ‘1’ THEN

j <=0;

ELSIF (clk’event and clk = ‘1’) THEN

IF line_buffer2((N-1)*9-1) = ‘1’ and (j < N*N) and done_pipe(2) = ‘1’ THEN

j <=j+1;

END IF;

END IF;

END PROCESS count;

————————————————— concurrent assignments———————————————————————————

Enable <= temp WHEN line_buffer2((N-1)*9-1) = ‘1’;

gauss <= std_logic_vector(adder2(15 downto 8)) WHEN (line_buffer3(1*9-

1) = ‘1’) ELSE

“00000000”;

start_wre <= start WHENj<(N-1)*N-1 or j>=N*N ELSE

temp;
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y_wre <= y WHENj < (N-1)*N-1 ELSE

“00000000”;

END Behavioral;

The behavioral description of the Gauss filter logic block is composed of three
processes and a section of concurrent assignments.

The first process called “gauss” is used to build up the shift registers for the local
caching of image lines. For the ease of explanation, an image of width x
height = 10 � 10 is considered for processing. The shift registers chain
line_buffer1, line_buffer2 and line_buffer3 is filled sequentially with pixel intensity
values. Moreover, each register cell contains also a supplementary bit which is set
up to “1” logic value (start_wre signal) once the first intensity value is written in
the registers. The “1” logic value is propagated to the last logic cell of the register
chain. Once the aforementioned “1” logic value reaches the last cell of the registers
chain, (line_buffer3(8) = ‘1’) the window operator computes the first output value
gauss, which is given by the adder2 operator and represents the first pixel from the
output image.

The second process is a sequential one which generates the computational stages
of the window operator. Depending on the kernel size, a different number of
pipeline stages are needed. In case of a M � N = 3 � 3 kernel size, 9 multipli-
cations are performed simultaneously and two accumulators are used to compute
the result of the window operator. The number of pipeline stages is considered as
defined by the constant “pipe_level = 3”. A shift register done_pipe(2 downto 0) is
generated. For each pixel intensity delivered as input to the Gauss logic block a “1”
logic value is written in the shift register cell done_pipe(0). When “1” logic values
reaches the done_pipe(2)cell, the output of the window operator is available on
gauss output of the logic block.

The third process called “count” generates an 8-bits counter which counts up to
the number of pixels of the input image. For the ease of representation and simu-
lation the input image is considered of size 10 � 10 pixels. The architecture can be
easily parameterized to fit various image dimensions.

The concurrent assignments within the behavioral description generate the en-
able output which signalize when valid data is available at the gauss output. Also,
the gauss output is assigned through a multiplexer as 0 value or as the result from
the adder2 accumulator.

Up to this point, the VHDL code is explained. Figure 4.6 details the simulation
results in case of the architecture for the Gauss filter. Thus, the Start input marks the
beginning of the computation for each pixel intensity value Y. The results are
available on the gauss output when “1” logic value is found at single bit
gauss_ready output. As compared with the enable output, the gauss_ready
accounts also for the delay due to the local caching performed by the convolution
architecture; thus it signalizes when first output data as part from the output image
is available on the gauss output.
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4.3 Hardware Architecture for the Canny Filter

The present chapter describes the Canny filter for edge detection together with its
hardware implementation. The proposed implementation uses multiple instances of
the architecture for convolution connected using a structural description which
fulfills the steps of a classic Canny edge detection filter. A test-bench is designed
for the simulation of the proposed architecture; moreover, the hardware architecture
for edge detection is integrated as a co-processor within a microprocessor system to
speed-up computation.

4.3.1 Canny Edge Detection

The edges are considered the locations of pixels where image brightness changes
sharply, or, where high-intensity contrast is present in the image. The edges occur
where the borders of objects are found; edge detection is widely used in image
segmentation, when the main scope is to divide the image into areas corresponding
to different objects. Image representation by its edges has the advantage that the
amount of data is significantly reduced, while retaining most of the image infor-
mation. The contours may be detected by applying a high-pass filter in the Fourier
domain, or a convolution with a suitable kernel in the spatial domain. In practice,
the detection is performed in the spatial domain, because there is less calculation
and better results given.

The Canny algorithm is considered a “standard method” for edge detection and it
is extensively used considering it delivers thin and pronounced contours. The
Canny edge detector is a multistep process (Fig. 4.7). First it uses linear filtering

Fig. 4.6 Simulation of the logic block for the Gauss filtering
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with a Gauss kernel to smooth the noise, and then calculates the force and the
direction for each pixel location within the smoothed image. This is done by
differentiating the image in two orthogonal directions (the second step) and cal-
culating the magnitude and the direction of the gradient (the third step). In the
fourth step of the process, the edge pixels are identified base on the pixel intensity
gradient as the pixels that survive a process called non-maximum suppression. The
diagram of the contour detection using the Canny filter is shown in Fig. 4.7.

The first step of the Canny edge detection, the Gauss filtering, was explained in
detail in Sect. 4.2 together with a hardware implementation and its corresponding
VHDL code.

After the image smoothing and noise elimination, the second stepestimates the
strength of the edges by computing the image gradient. Most edge detection
methods work on the assumption that edges occur where a discontinuity appears in
the pixel intensity. In most cases, edge detection operators can be considered
gradient calculators. Considering a function f of one or more variables, the gradient
vector field components are the partial derivatives of the f function, as denoted by
Eq. 4.5.

rf ¼ @f
@x1

; . . .;
@f
@xn

� �
ð4:5Þ

Let I(x,y) denote a digital image with x, y the spatial coordinates of image pixels.
Considering images are discrete functions, for computingtheir gradient vector field
we can use finite differences to approximate image derivatives on the two
orthogonal directions, x and y respectively. It is well known that the derivatives are
linear and shift-invariant; thus, the calculation of the gradient is most often achieved
through a convolution. Various convolution kernels have been proposed to find
edges, some of them are: Roberts, Prewitt and Sobel. In our case, Prewitt kernel is
used; it is based on the simple idea that the difference between the lines and the
difference between the columns are used for the horizontal gradient and for the
vertical gradient respectively.
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Fig. 4.7 Diagram for the contour detection using Canny filter
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Regarding the hardware implementation for the vertical and horizontal deriva-
tives, the architecture for convolution was used together with Prewitt convolution
kernel and two simple signed adders to design a logic-block similar with the one
from example 4.1. The designed logic block is used for the second step of the
Canny filter. The corresponding VHDL code can be found in Appendix D.

The third step involves the computation of the magnitude and the direction of the
gradient, denoted by P and Ө respectively. The absolute magnitude of the gradient
|P| is calculated by the square root of the sum of two squares: the image derivative
on the horizontal direction (dx) and on the vertical direction (dy). To reduce the
computational cost for the magnitude, P is approximated by the absolute value of
the sum of the horizontal and vertical derivatives [see Eq. (4.8)].

Pj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
� dxþ dyj j ð4:8Þ

The direction of the gradient (Ө) is computed according to Eq. (4.9):

h ¼ arctan
dy
dx

ð4:9Þ

The arctangent function requires at least fix-point precision for its calculation.
There are CORDIC logic blocks available for trigonometric functions, but using
them would significantly increase the hardware resource usage. Nevertheless, the
range of integer values for I(x,y) together with 3 � 3 the kernel size used in our
example, lead to the possibility to approximate both the magnitude and the direction
of the gradient. The value and the sign of the gradient componentsare analyzed to
calculate the direction of the gradient. Considering the pixel intensity value I(x, y),
the direction Ө of the gradient can be associated to one of the areas shown in
Fig. 4.8, according to the derivatives sign and their absolute values |dx| and |dy|.

The fourth step of the edge detection using Canny filter performs a selection of
the pixels corresponding to edges within the image based on the computed gradient.
This is done also based on image convolution, which allows that the values of the
pixels under analysis to be compared with its neighboring pixels. The pixel that
does not have a local maximum magnitude is eliminated. The comparison is made
exclusively in the direction pointed by the gradient vector. For example, if the
approximation of the gradient direction is between 0° and 45°, the magnitude of the
gradient at the point Px;y ¼ dxj j þ dyj j is compared with the magnitude of the
gradient at the points that are next to the current point, as it is shown in Fig. 4.9.
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Pa ¼ Px;y�1 þPx�1;yþ 1

2
ð4:10Þ

Pb ¼ Px�1;yþ 1 þPx;yþ 1

2
ð4:11Þ

The central pixel Px,y is considered as part of the edge if Px,y > Pa and Px,y > Pb,
where Pa and Pb are given by Eqs. (4.10) and (4.11) respectively. If the conditions
are met, then the center pixel Px,y is removed (it is not considered a part of the
edge).

4.3.2 Hardware Implementation of the Canny Edge
Detector

Gauss filter for smoothing the image is implemented using the architecture detailed
in example 4.1. Regarding hardware architectures for the steps three and four, the
VHDL code for the corresponding logic blocks can be found in Annex C. The
proposed architectures are similar to the one for Gauss filtering. Once the local
caching of image lines is performed for the second step of the Canny filter, another
two window operators are designed and used to compute the magnitude and
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direction of the gradient P and Ө respectively (these two operators are included in
the logic block called gradient). These values are input for another logic block
called suppression associated to the non-maximum suppression, which also uses
convolution architecture.

To sum up, three logic blocks are designed based on image convolution; the
convolution is implemented with a local caching procedure performed by shift
registers as in Fig. 4.4. The three logic blocks are: one for the Gauss filter (Gauss
Filter), one for gradient computation (Gradient) and one for non-maximum sup-
pression (Suppression) (Fig. 4.10).

Further on, an example with the VHDL structural description of the hardware
architecture for the Canny filter is detailed.

Example 4.2—Structural description of Canny filter architecture
The declaration of the logic block, namely Edge_Detector for edge detection is
presented in the next VHDL code sequence:

————————————————— Entity declaration———————————————————————————————————

ENTITY Gauss_Filter IS

PORT (

CLk : IN std_logic;

Start : IN std_logic;

Reset : IN std_logic;

y : IN std_logic_vector (7 downto 0);

EDGE : OUT std_logic_vector (8 downto 0);

EDGE_valid : OUT std_logic;

send_READY : OUT std_logic);

END Gauss_Filter;

———————————— End of entity declaration——————————————————————————————————

The proposed logic block has as inputs ports the following: CLK for the clock
signal, Start for signaling when a pixel intensity value is delivered at the input port
Y(pixel intensities values from the input image are sequentially delivered). The
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Fig. 4.10 Structural description of the Canny edge detection architecture
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edge resulted image is delivered sequentially pixel by pixel at theEDGE output port
(with a specific delay computed in the next Sect. 4.3.3); each pixel intensity from
the output image is signalized by ‘1’ logic at the edge_valid output. The
Edge_Detector logic block is composed of three components interconnected as it is
shown in Fig. 4.10. The reset port is used for initializing the shift registers with 0
before applying the hardware architecture for edge detection on a given image I.

——————————Structural description of the Canny edge detector ———————————

ARCHITECTURE Behavioral OF proc_chain IS

COMPONENT gauss_filter

PORT( Start : INstd_logic;

Reset : IN std_logic;

clk : IN std_logic;

Y : IN std_logic_vector(7 downto 0);

start_next: OUT std_logic;

gauss_ready : OUT std_logic;

gauss : OUT std_logic_vector (7 downto 0));

END COMPONENT;

COMPONENTgradient

PORT( Start : IN std_logic;

reset : IN std_logic;

clk : IN std_logic;

y : IN std_logic_vector(7 downto 0);

start_next: OUT std_logic;

phase : OUT std_logic_vector (1 downto 0);

magn : OUT std_logic_vector (8 downto 0));

END COMPONENT;

COMPONENT suppression

PORT( Start : IN std_logic;

reset : IN std_logic;

clk : IN std_logic;

data : IN std_logic_vector(8 downto 0);

phase : IN std_logic_vector (1 downto 0);

edge_valid : OUT std_logic;

edge : OUT std_logic_vector (8 downto 0));

END COMPONENT;

———————— wires declaration used to interconnect the three components—————

CONSTANT PIPE_LEVEL : integer: = 3;

SIGNAL gauss_wre : std_logic_vector (7 downto 0);

SIGNAL magn_wre : std_logic_vector (8 downto 0);

SIGNAL phase_wre: std_logic_vector (1 downto 0);

SIGNAL gauss_ready_wre: std_logic;

SIGNAL start2: std_logic;

SIGNAL start3: std_logic;
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————— instantiation of the three logic blocks and their interconnection———

BEGIN

uut1: Gauss_filter PORT MAP (CLK => CLK,

START => START,

reset => reset,

y => y,

start_next => start2,

gauss_ready => gauss_ready_wre,

gauss => gauss_wre);

uut2: gradient PORT MAP (CLK => CLK,

START =>START2,

reset => reset,

y => gauss_wre,

start_next => start3,

phase => phase_wre,

magn => magn_wre );

uut3: suppression PORT MAP (Start => START3,

CLK => CLK,

reset => reset,

data => magn_wre,

phase => phase_wre,

edge_valid => EDGE_VALID,

edge => EDGE);

send_ready <=gauss_ready_wre;

END Behavioral;

As the VHDL code shows, three components are declared and instantiated, one
for each computational step of the Canny edge detector. The signals declared within
the aforementioned VHDL code are driven by wires which interconnect the three
components. The result corresponds to three stages pipeline architecture for edge
detection.

4.3.3 Timing Considerations for the Canny Edge Detection
Architecture

Using the proposed approach for convolution, logic blocks are implemented for
image smoothing, gradient computation and non-maximum suppression. The cus-
tom processing architectures detailed in Sects. 4.2 and 4.3 implement in a pipeline
manner the independent processing steps of the Canny edge detector. In Fig. 4.11,
the computational stages performed by the proposed architectures are denoted by
(1)—Gauss filter, (2)—Gradient and (3)—Suppression. Let t0mark the moment
when the first pixel intensity value is delivered to the hardware architectures for

116 4 Hardware Architecture for Edge Detection



processing. Depending on the size of the convolution kernel used in each of the
processing architecture, there is a time delay up to the point the data is valid at the
output of each of the architecture. Thus, in case of our hardware architectures where
a 3 � 3 convolution kernels are used, three clock cycles (3xTclk) delay is needed for
data valid at the output. In other words, the time interval from t0 to t1 (computation
end of the first architecture—Gauss Filter) is 3xTclk. Once the t1 is reached, another
pixel intensity value is delivered for processing to the Gauss Filter architecture
(computational step (1’)), whereas the architecture Gradient performs its calculation
which also lasts for 3xTclk (t1 to t2) and it is denoted by computational step (2). In
the same manner, pixel intensity values are delivered sequentially to the proposed
architecture each with a delay computed as follows Dt = t1−t2 = 3xTclk; the resulted
image is delivered at the output edge of the proposed Canny filter architecture at
each Dt time interval. The output of the proposed architecture is visible also in
Fig. 4.11. Thus, at the end of the computational steps denoted by (3), (3′) and (3″)
three output pixels are delivered, corresponding to the inputs (1), (1′) and (1″)
respectively. The delay between the input (1) and its corresponding output (3) is,
obviously, DT1 = 3xDt.

In case of the proposed hardware architecture for Canny filtering, another time
delay DT2 should be taken into account. This is due to the local caching procedure
of the convolution operation used to perform the Gauss filtering. Thus, the registers
line_buffer1, line_buffer2 and line_buffer3 (initialized with ‘0’ at reset) have to be
filled sequentially with pixel intensity values from the input image before delivering
the first output. Moreover, another aspect should be taken into account: the output
image size should be the same as the input image. Consequently, after
DT2 = width + 2 pixel intensity values loaded in the shift registers (where width,
represents the input image horizontal size) the first output pixel is available. The
same delay is introduced by each of the three convolution operation. In this way, a
3xDT2 time interval added to the initial DT1, lead to a total delay path for the output
image DT = 1 + 3(width + 2)Dt.

The architecture for the Canny edge detection filter is simulated and the simu-
lation results are discussed with respect to the timing considerations detailed pre-
viously. For the simulation to be performed, a test-bench is first created for the
proposed architecture. The test-bench delivers pixel intensity values at the filter
input and stores the resulted image. An example on how to construct the specific
test-bench is presented next.

1 2 3

1' 2' 3'

t1 t2 t3 t4t0 time

1'' 2'' 3''

Fig. 4.11 Processing pipeline for the three independent steps of the canny edge detection filter:
(1) Gauss filter, gradient computation and non-maximum suppression
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Example 4.3—Test-bench for the Canny filter architecture
In order to test the functionality of the Canny filter architecture named edge_
detector, the following VHDL code is used to build-up the test-bench. The test-bench
is declared as any other logic block in VHDL and is named test-bench_edge_
detector. Within the behavioral description of the test-bench_edge_detector archi-
tecture, the component edge_detecor is instantiated. Moreover, for each input and
output of the architecture under test, the corresponding signals are declared. These
signals will be used as wires to deliver input data to the architecture under test and
also to monitor the outputs of the same edge_detector architecture.

ENTITY testbench_edge_detector IS

END testbench_edge_detector;

ARCHITECTURE behavior OF testbench_pchain IS

———Component Declaration for the Unit Under Test———————————

COMPONENT edge_detector

PORT(CLk : IN std_logic;

Start : IN std_logic;

Reset : IN std_logic;

y : IN std_logic_vector(7 downto 0);

EDGE : OUT std_logic_vector(8 downto 0);

EDGE_valid : OUT std_logic;

send_READY : OUT std_logic

);

END COMPONENT;

——————————— Inputs declaration ———————————————————————————————

SIGNAL CLk : std_logic : = ‘0’;

SIGNAL Start : std_logic : = ‘0’;

SIGNAL Reset : std_logic : = ‘0’;

SIGNAL y : std_logic_vector(7 downto 0) : = (others => ‘0’);

——————— Outputs declaration —————————————————————————————

SIGNAL EDGE : std_logic_vector(8 downto 0);

SIGNAL EDGE_valid : std_logic;

SIGNAL send_READY : std_logic;

CONSTANT clk_period : time : = 10 ns;

—————————————————— continued on the next code sequence——————————————

Up to this point, the VHDL code is used for the instantiation of the unit under
test, edge_detector architecture, and to declare the signals associated to the archi-
tecture inputs and outputs. Further on, the VHDL code uses different processes to
deliver input data to the edge_detector and and to monitor edge_detector archi-
tecture outputs. The clk_proc processis used to generate the clock signal. The
process stim_proc inserts stimulus to the architecture; sequentially reads the .txt file
“/microarrayspot.ini” which contains the pixel intensity values of an image. The
read pixel intensity values are delivered to the Y input of the edge_detector
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architecture. The next process called writefile stores the resulted Canny filtered
image. The resulted image is stored pixel by pixel in the output.txt file “/nC.ini” by
reading the output EDGE of the architecture and writing it using the print function.

——————————continued from previous code sequnece—————————————————————

BEGIN

uut: proc_chain PORT MAP (

CLk => CLk,

Start => Start,

Reset => Reset,

y => y,

EDGE => EDGE,

EDGE_valid => EDGE_valid,

send_READY => send_READY);

clk_procs:PROCESS

BEGIN

clk <= ‘0’;

wait for clk_period/2;

clk <= ‘1’;

wait for clk_period/2;

END PROCESS;

———————————— process which inserts stimulus ————————————————————————

stim_proc: PROCESS

FILE Na: TEXT open READ_MODE is “microarrayspot.ini”;

FILE Nb: TEXT open READ_MODE is “nB.ini”;

VARIABLE LineNa: string(1 to 8);

VARIABLE LineNb: string(1 to 8);

BEGIN

reset <= ‘0’;

WAIT for clk_period;

reset <= ‘1’;

WAITFOR clk_period;

reset <= ‘0’;

WAIT FOR 10*clk_period;

WHILE not endfile(Na) LOOP

str_read(Na, LineNa);

Y <= to_std_logic_vector(LineNa(1 to 8));

start <= ‘1’ ;

WAIT FOR CLK_period;

start <= ‘0’ ;

WAIT FOR 3*clk_period;
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END LOOP;

WAIT;

END PROCESS;

————————————————process used to store the output data in nC.ini file———————

writefile: PROCESS

FILE Nc : TEXT open WRITE_MODE is “nC.ini”;

VARIABLE LineNc : string(1 to 9);

BEGIN

WAIT UNTIL rising_edge (clk);

IF EDGE_valid = ‘1’ THEN

LineNc : = str(EDGE);

print(Nc, LineNc);

END IF;

END PROCESS;

END;

The simulation results of the previous VHDL test-bench description is presented
in Fig. 4.12. The test-bench performs the testing for the Canny edge detection
architecture; it includes the reset of all logic blocks at the beginning. Further on,
pixel intensity values are sent as inputs to the Y port of our Canny filter block. Each
input of a pixel intensity value Y is marked by the “1” logic value on the Start
input. For this example, a width x height = 10 � 10 input image I is considered for
processing. Obviously, a 10 � 10 output image is found at the output EDGE with a
delay consistent with the timing considerations detailed in Sect. 4.3.3. The end of
the computation for each input value is marked by the send_ready value. This is not
associated with pixel intensity value from the output image O, considering the
delayed introduced by the local caching procedure for each computational step
(Gauss filtering, gradient computation and non-maximum suppression). Thus, the
total delay path of DT = 1 + 3(width + 2)Dt = 111 Tclk (see Sect. 4.3.3—timing
considerations) from the Start to the last pixel intensity from the output image is
visible on the simulation from Fig. 4.12. The resulted 10 � 10 pixel intensity
values are stored in the “/nC.ini” output file.

Running the simulation test-bench lead to generation of the “/nC.ini” file con-
tent. The file includes the resulted image after the architecture for Canny filter is
applied. Figure 4.13 shows both the content for the initial image to be processed
(“microarrayspot.ini”) and the resulted Canny filtered image.

4.3.4 System-on-a-Chip (SoC) for Edge Detection

A SoC holds all the necessary hardware and software to form a complete system
which serves a specific purpose, such as an image processing device. In order to
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take advantage of the proposed architecture for Canny edge detection, it has to be
integrated within an image processing system. Commonly, these types of hardware
architectures are used as custom hardware accelerators in microprocessor systems to
speed-up computation. In our case, the Canny edge detection architecture is added
to a Microblaze processor system-on-a-chip. Thus, as inspired by [8], the proposed
logic block for edge detection is connected through the FSL (Fast Simple Link) data
bus [9] to the Microblaze processor. The FSL protocol is used to delivered pixel
intensities values to our proposed hardware architecture which is considered the
slave device. The master device is the Microblaze processor which reads data from
RAM and delivers data to the slave device; also the master device receives
sequentially the results of the Canny edge detector filter. The write and read
operation on the FSL bus are performed using the getfsl and putfsl c functions. FSL
implements a point to point FIFO-based communication as shown in Fig. 4.14. FSL
protocol involves two clock inputsFSL_M_Clk and FSL_S_Clk for master and slave

Fig. 4.12 Simulation results for the Canny edge detection hardware architecture: upper side the
beginning of the simulation including the reset, lower-side the end of the simulation where
edge_valid marks the pixel intensity values available for the output image

Fig. 4.13 Files contents with the initial grayscale image to be processed (a) and the result
delivered by the proposed architecture for Canny filter (b)
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respectively, FSL_S_Data input port (for writing the pixel intensities to be pro-
cessed into the FSL FIFO), FSL_M_Data output port (to read the resulted pixel
intensity delivered by the Canny logic unit) to the FSL FIFO, FSL_M_Write and
FSL_S_Read represent the control signal for read and write operation in and out of
the FSL FIFO. FSL_S_Exists is a control signal which specifies if the FSL FIFO is
empty or not.

As detailed in Fig. 4.15, the Canny edge detection logic block is defined by the
inputs Clk, Reset, Start and Y. Y corresponds to the input pixel intensity values
which are processed sequentially by the Canny logic block. The outputs of the
Canny logic block are edge and edge_valid; edgecorrespond to pixel intensity
values from the output image and edge_valid = ‘1’ marks when valid data is
available at the edge output. The Canny logic block is integrated within a
Microblaze processor system using the FSL data bus. Taking into account the FSL
protocol, a finite state machine (FSM) defined by state_machine entity is designed
for the control of the proposed processing unit for Canny edge detector.

Example 4.4—VHDL description of the FSM for FSL control
The designed FSM has 4 states, st_reset, st_wait, st_work and end_work, and drives
the Canny edge detector hardware implementation using the FSL data bus (see
Fig. 4.16 for the FSM). The same input data as the one in Example 4.3 is con-
sidered for testing the architecture for edge detection: a 10 � 10 pixels size image
is written in the FSL FIFO buffer using the putfsl function.

FSL_M_Clk
FSL_M_Data

FSL_M_Control
FSL_M_Write
FSL_M_Full 

FSL_S_Clk
FSL_S_Data
FSL_S_Control
FSL_S_Read
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Fig. 4.14 FIFO-Based communication for the FSL bus

FSL_M_Write

FSM

fifo_emty

FSL_M_Clk

FSL_S_Clk

Reset Reset

Clk

FSL_S_Data Input

FSL_S_Exists

FSL_S_Read

FSL_M_Data

Canny

Reset
CLk
Y[7...0]
Start

edge [8...0]
edge_valid

send_READY

`

FSL
FIFO

Read_next

Output
Output_valid

Fig. 4.15 Integration of the Canny edge detector processing unit into a microprocessor system
through the FSL data bus using a specific FSM
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The initial state st_reset initializes a counter nbtreat = ‘0’, for the number of
pixels to be written in the FSL FIFO.

After reset, the next state is st_wait where, while FIFO is not empty
(FIFO_empty = ‘0’), the pixel intensities are delivered to the Y port of the pro-
cessing block through the FSL_S_Data; the StartTreatment output of the FSM is
assigned to logic value ‘1’and it is connected to the input Start of the Canny filter
architecture. Moreover, if FIFO_empty = ‘0’ then the next state is st_work. Also a
counter nbtreatis incremented to count the processed pixel intensities (nbtreat =
nbtreat + 1). The maximum value for the counter is 100 and it can be used to mark
the end of delivering input data for processing (note: it is not used in this example).

In St_work state, the Canny architecture starts the processing, and through the
output port “send_ready” the FSM goes in the state “end_work”. In other words,
the read pixel intensities are processed, and when a result is available (send_
ready = ‘1’) the EndTreatment signalize the end of processing and the next state
becomes end_work.

In the end_workstate, the FSM delivers the control signal FSL_S_read to read
the next pixel intensity from the FIFO to be processed, where the processing
continues if FIFO_empty = ‘0’ or the FSM waits for new values to be written in the
FSL FIFO.

In the FSM description, there is also a concurrent assignment output_
valid <= edge_valid which is associated with the FSM_M_write which controls
writing data from the output data bus to the FSL output FIFO. The FSM_M_write
triggers the write operation of the data available on the FSL_M_Data bus into the
FSL output FIFO.

End_workSt_Work

St_Reset

Reset

Nbtreat <= ‘’0'

St_Wait
FIFO_empty = ‘1’

FIFO_empty = ‘0’

EndTreatment=’1'

Start_treatement <= 1

Nbtreat <=Nbtreat + 1 Output <= edge_valid

Fig. 4.16 FSM description
for FSL control

4.3 Hardware Architecture for the Canny Filter 123



TheVHDLcodesequence for thefinite statemachine state_machinewhichcontrols
the delivery of data from FSL_S_Data bus to the Canny edge detector processing unit
and reading the resulted data trough the FSL_M_Data bus is presented next.

————————————VHDL description of the FSM for FSL control ————————————

ENTITY State_Machine IS

PORT( Start : in std_logic;

Reset : in std_logic;

clk : in std_logic;

input : in std_logic_vector(31 downto 0);

fifoempty : in std_logic;

readNext : out std_logic;

output: out std_logic_vector (31 downto 0);

output_valid : out std_logic);

END ENTITY State_machine;

ARCHITECTURE fsmOF State_Machine IS

COMPONENT proc_chain IS

PORT (CLk : in std_logic;

Start : in std_logic;

Reset : in std_logic;

y : in std_logic_vector (7 downto 0);

EDGE : out std_logic_vector (8 downto 0);

EDGE_valid : out std_logic;

send_READY: out std_logic);

END COMPONENT;

TYPE states IS (st_reset, st_wait, st_work,st_endwork);

SIGNAL current: states;

SIGNAL nbtreat : integer ;

SIGNAL startTreatment : std_logic;

SIGNAL endTreatment : std_logic;

BEGIN

procchain: proc_chain PORTMAP (

CLk => clk,

Start => startTreatment,

Reset => Reset,

Y => input (7 downto 0),

EDGE => output(8 downto 0),

EDGE_valid => output_valid,

send_READY => endTreatment);
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PROCESS(clk)

BEGIN

IF rising_edge(clk) THEN

IF reset = ‘1’ THEN

current <= st_reset;

nbtreat <= 0;

ELSE

CASE current IS

WHEN st_reset =>

current <= st_wait;

WHEN st_wait =>

IF fifoempty = ‘0’ THEN

IF nbtreat = 100 THEN

nbtreat <= 0;

ELSE

nbtreat <=nbtreat + 1;

END IF;

current <= st_work;

startTreatment <= ‘1’;

ELSE;

current <= st_wait;

startTreatement <= ‘0’;

END IF;

WHEN st_work =>

IF endTreatment = ‘1’ THEN

current <= st_work;

ELSE

current <= st_wait;

END IF;

startTreatment <= ‘0’;

WHEN others => current <= st_reset;

END CASE;

END IF;

END IF;

END PROCESS;

Output_valid <= edge_valid;

Read_next <=startTreatment;

END ARCHITECTURE;
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4.4 Canny Architecture Applied in Microarray Image
Processing

Microarray image processing is chosen to exemplify the use of such hardware
architecture in real-life applications. As described in the introductory section,
microarray images include an increased number of microarray spots, up to 44 k,
which leads to increased microarray image size. Microarray image processing uses
image enhancement techniques together with PDE applied on vertical and hori-
zontal image projections to estimate spot location. Once the spot location is
established, segmentation is applied and, using border detection spot intensity
extraction is performed and the level of expression for each gene is estimated. Thus,
the differentially expressed genes are found by comparing the log odd ratios of the
intensities from the two channel of the microarray image.

The layout of microarray images is suitable for processing multiple spots at
once. Here, the benefits of spatial and temporal parallelism offered by FPGA
technology come into play. Thus, on one side, the proposed approach for Canny
edge detector allows performing fast computation for the edge detection in case of
one microarray spot, and on the other side, multiple instances of the proposed
Canny edge detection architecture can be used to processed multiple spots in
parallel. Let the entire microarray image processing workflow be described by
image enhancement using point-wise transform, profile computation and autocor-
relation for spot location identification and Canny edge detection for segmentation.
The levels of parallelization for the previously described image processing algo-
rithms are discussed next.

Let Mand Nbe the image dimensions. For image point-wise enhancement using
logarithm transformation, due to the independent computation of logarithm for each
pixelintensity value, multiple instances of an architecture similar to the one from
Chap. 3 can be used. Considering p the number of instances of the logarithm
computation units, the level of parallelization for image enhancement is (MxN)/p.
For spot location identification using image profiles computation, PDE and auto-
correlation, the level of parallelization is not a significant one, considering they are
applied on image profiles. Thus, they are not considered for parallelization.

Once the spot locations are estimated, where k is the number of spots, the edge
detection can be parallelized using the proposed architecture. Thus, the Canny edge
detection hardware architecture is instantiated multiple times for parallel compu-
tation of microarray spots. Thus, for each spot, the hardware architecture of the
Canny edge detector can be inferred. Nevertheless, the FPGAs resources are limited
and, consequently, implementation constraints are involved regarding the number
k of Canny edge detection hardware architectures. More details regarding the levels
of parallelization can be found in [8]. The hardware resource usage in case of the
XC5VlX110T FPGA chip for the implementation of the proposed Canny edge
detection architecture are presented in the Table 4.1.
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The number of point-wise logarithm computation units is considered p = 100 for
an M � N = 6100 � 2160 pixels Agilent image. The number of hardware archi-
tectures for parallel edge detection of microarray spots is k = 10. In Fig. 4.17, the
abscissa axis represents different microarray images with different sizes given by
the number of included microarray spots, whereas the ordinate axis represents the
computational time for their processing. The computational time is evaluated using
a personal computer and also the proposed application specific architectures
implemented on XC5VlX110T Virtex5 FPGA chip [9].

The proposed application specific hardware architecture for edge detection in
microarray images takes advantage of the parallel computation capabilities of the
FPGA technology. The proposed implementation proved to be efficient with respect
to the computational time (us). Thus, the experimental results based on algorithm
parallelization show significant improvements of the proposed computation
approach compared with a general purpose processor (PC) (Fig. 4.17). Over 80 ms
represents the total gain considering the computational time of the proposed
architecture, as compared with a general purpose processor computational time. As
expected, the FPGA technology is proved to be an efficient solution for an
application-specific architecture for microarray image processing.

The proposed architecture for edge detection, connected as hardware accelera-
tors to an FPGA-based processor system, is the first step towards an automated
microarray image processing system. The main benefit of such system is the pos-
sibility to replace the workstation together with the software platform for
microarray image processing with a system on a chip. Moreover, the proposed
FPGA-based system can be easily integrated within the microarray scanner level.
Due to the reduced computational time and cost, a large number of microarray
analyses can be performed, compared with the existing computational tools.

Table 4.1 Hardware resource usage for the implementation of 10 Canny edge detection hardware
architecture for parallel microarray spot edge detection

Device utilisation summary (XC5VlX110T)

Slice logic utilisation Used Available Utilisation (%)

Number of slice registers 6125 69,120 8.8

Number of slice LUTs 8174 69,120 11.8

Number of bonded IOBs 129 640 20.2

Number of occupied slices 2328 17,280 13.4
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Fig. 4.17 Computational
time for Canny edge detector
filter implemented on a
Virtex FPGA compared with
the computational time
needed by a general purpose
processor for the same task
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In the following chapters, application-specific hardware architecture for more
complex automatic microarray image processing methods such us, partial differ-
ential equations (PDE)-based gridding or segmentation using circular Hough
transform are detailed.

Appendix D

—————————VHDL code for the non-maximum suppression processing step ——————

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity suppression is

Port( Start : in std_logic;

reset : in std_logic;

clk : in std_logic;

data : in std_logic_vector(8 downto 0);

phase : in std_logic_vector (1 downto 0);

edge_valid: out std_logic;

edge : out std_logic_vector (8 downto 0));

end suppression;

architecture Behavioral of suppression is

constant N : integer : = 10;

CONSTANT PIPE_LEVEL : integer: = 3;

signal line_buffer1: std_logic_vector(N*12-1 downto 0): = (Others => ‘0’);

signal line_buffer2 : std_logic_vector(N*12-1 downto 0): = (Others => ‘0’);

signal line_buffer3 : std_logic_vector(3*12-1 downto 0): = (Others => ‘0’);

signal Pa,Pb : UNSIGNED(9 downto 0);

signal j : integer range 102 downto 0: = 0;

signal done_pipe:

std_logic_vector (PIPE_LEVEL-1 downto 0): = (others => ‘0’);

signal start_wre,temp : std_logic;

signal data_wre : std_logic_vector(8 downto 0);

signal phase_wre : std_logic_vector(1 downto 0);

begin

edge_p : process (CLK, reset)

VARIABLE P1,P2,P3 : std_logic_vector(11 downto 0);
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begin

if reset = ‘1’ then

line_buffer1 <= (others => ‘0’);

line_buffer2 <= (others => ‘0’);

line_buffer3 <= (others => ‘0’);

elsif (clk’event and clk = ‘1’) then

if start_wre = ‘1’ then

if start_wre = ‘1’ then

p1 : = start_wre & phase_wre & data_wre;

p2 : = line_buffer1(11 downto 0);

p3 : = line_buffer2(11 downto 0);

else

p1: = “000000000000”;

p2: = “000000000000”;

p3: = “000000000000”;

end if;

line_buffer1 <= P1 & line_buffer1(N*12-1 downto 12);

line_buffer2 <= P2 & line_buffer2(N*12-1 downto 12);

line_buffer3 <= P3 & line_buffer3(3*12-1 downto 12);

end if;

if (line_buffer3(11) = ‘1’) then

if line_buffer2 ((N-1)*12-2 downto (N-1)*12-3) = “00” then

Pb <= UNSIGNED(‘0’ & line_buffer3

(3*12-4 downto 3*12-12)) + UNSIGNED(‘0’ & line_buffer3

(2*12-4 downto 2*12-12));

Pa <= UNSIGNED(‘0’ & line_buffer1((N-2)*12-4 downto (N-2)

*12-12)) + UNSIGNED(‘0’ & line_buffer1((N-1)*12-4 downto (N-1)*12-12));

if (UNSIGNED (line_buffer2 ((N-1)*12-4 downto (N-1)*12-12)) >= Pa

(9 downto 1)) and (UNSIGNED (line_buffer2 ((N-1)*12-4 downto (N-1)

*12-12)) >= Pb(9 downto 1)) then

edge <= line_buffer2 ((N-1)*12-4 downto (N-1)*12-12);

else

edge <=“000000000”;

end if;

end if;

if line_buffer2 ((N-1)*12-2 downto (N-1)

*12-3) = “01” then

Pa <= UNSIGNED(‘0’ & line_buffer3((3)*12-4 downto (3)

*12-12)) + UNSIGNED(‘0’ & line_buffer2((N)*12-4 downto (N)*12-12));

Pb <= UNSIGNED(‘0’ & line_buffer1((N-2)*12-4 downto (N-2)

*12-12)) + UNSIGNED(‘0’ & line_buffer2((N-2)*12-4 downto (N-2)*12-12));

if (UNSIGNED (line_buffer2 ((N-1)*12-4 downto (N-1)

*12-12)) >= Pa(9 downto 1)) and (UNSIGNED (line_buffer2 ((N-1)
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*12-4 downto (N-1)*12-12)) >= Pb(9 downto 1)) then

edge <= line_buffer2 ((N-1)*12-4 downto (N-1)*12-12);

else

edge <=“000000000”;

end if;

end if;

if line_buffer2 ((N-1)*12-2 downto (N-1)

*12-3) = “10” then

Pa <= UNSIGNED(‘0’ & line_buffer1((N)*12-4 downto (N)

*12-12)) + UNSIGNED(‘0’ & line_buffer2(N*12-4 downto N*12-12));

Pb <= UNSIGNED(‘0’ & line_buffer3

(1*12-4 downto 1*12-12)) + UNSIGNED(‘0’ & line_buffer2((N-2)

*12-4 downto (N-2)*12-12));

if (UNSIGNED (line_buffer2 ((N-1)*12-4 downto (N-1)

*12-12)) >= Pa(9 downto 1)) and (UNSIGNED (line_buffer2 ((N-1)

*12-4 downto (N-1)*12-12)) >= Pb(9 downto 1)) then

edge <=line_buffer2 ((N-1)*12-4 downto (N-1)*12-12);

else

edge <=“000000000”;

end if;

end if;

if line_buffer2 ((N-1)*12-2 downto (N-1)

*12-3) = “11” then

Pa <= UNSIGNED(‘0’ & line_buffer3

(1*12-4 downto 1*12-12)) + UNSIGNED(‘0’ & line_buffer3

(2*12-4 downto 2*12-12));

Pb <= UNSIGNED(‘0’ & line_buffer1

(N*12-4 downto N*12-12)) + UNSIGNED(‘0’ & line_buffer1((N-1)

*12-4 downto (N-1)*12-12));

if (UNSIGNED (line_buffer2 ((N-1)*12-4 downto (N-1)

*12-12)) >= Pa(9 downto 1)) and (UNSIGNED (line_buffer2 ((N-1)

*12-4 downto (N-1)*12-12)) >= Pb(9 downto 1)) then

edge <= line_buffer2 ((N-1)*12-4 downto (N-1)*12-12);

else

edge <=“000000000”;

end if;

end if;

elsif line_buffer2(N*12-1) = ‘1’ then

edge <=“000000000”;

pa <=“0000000000”;

pb <=“0000000000”;

end if;
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done_pipe(0) <= START_wre;

done_pipe(1) <= done_pipe(0);

done_pipe(2) <= done_pipe(1);

temp <= done_pipe(2);

end if;

end process edge_p;

debug: process (CLK, reset)

begin

if reset = ‘1’ then

j <=0;

elsif (clk’event and clk = ‘1’) then

if line_buffer2((N-1)*12-1) = ‘1’ and j < N*N and done_pipe

(2) = ‘1’ then

j <=j + 1;

end if;

end if;

end process debug;

edge_valid <= temp when line_buffer2((N-1)*12-1) = ‘1’;

start_wre <= start when J < (N-1)*N-1 or j >=N*N else

temp;

data_wre <= data when J < (N-1)*N-1 else

“000000000”;

phase_wre <= phase when j < (N-1)*N-1 and j >=2 else

“00”;

end Behavioral;

——————————————————————————————————————————————————————————————————————

———————————— Gradient computation filter (magnitude and phase)———————————

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity Y_filter is

Port( Start : in std_logic;

reset : in std_logic;

clk : in std_logic;

y : in std_logic_vector(7 downto 0);

start_next: out std_logic;

phase : out std_logic_vector (1 downto 0);

magn : out std_logic_vector (8 downto 0)

);

end Y_filter;
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architecture Behavioral of Y_filter is

constant N : integer: = 10;

CONSTANT PIPE_LEVEL : integer: = 3;

signal line_buffer1 : std_logic_vector

(N*9-1 downto 0): = (Others => ‘0’);

signal line_buffer2 : std_logic_vector

(N*9-1 downto 0): = (Others => ‘0’);

signal line_buffer3 : std_logic_vector

(3*9-1 downto 0): = (Others => ‘0’);

signal dY : SIGNED (8 downto 0);

signal dX : SIGNED (8 downto 0);

signal j : integer range 102 downto 0: = 0;

signaldone_pipe: std_logic_vector (PIPE_LEVEL-1 downto 0):

= (others => ‘0’);

signal start_wre,temp : std_logic;

signal y_wre : std_logic_vector(7 downto 0);

begin

Y_p : process (CLK, reset)

VARIABLE P1,P2,P3 : std_logic_vector(8 downto 0);

begin

if reset = ‘1’ then

line_buffer1 <= (others => ‘0’);

line_buffer2 <= (others => ‘0’);

line_buffer3 <= (others => ‘0’);

elsif (clk’event and clk = ‘1’) then

if start_wre = ‘1’ then

if start_wre = ‘1’ then

p1 : = start_wre & y_wre;

p2 : = line_buffer1(8 downto 0);

p3 : = line_buffer2(8 downto 0);

else

p1: = “000000000”;

p2: = “000000000”;

p3: = “000000000”;

end if;

line_buffer1 <= P1 & line_buffer1(N*9-1 downto 9);

line_buffer2 <= P2 & line_buffer2(N*9-1 downto 9);

line_buffer3 <= P3 & line_buffer3(3*9-1 downto 9);

end if;
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if (line_buffer3(8) = ‘1’) then --and (j/= 20) and (j/= 21) and (j/

= 30) and (j/= 31)and (j/= 40) and (j/= 41)and (j/= 50) and (j/= 51)and (j/

= 60) and (j/= 61)and (j/= 70) and (j/= 71) and (j/= 80) and (j/= 81)then

dY <= SIGNED (‘0’ & line_buffer1((N-1)*9-2 downto (N-1)

*9-9)) - SIGNED(‘0’ & line_buffer3(2*9-2 downto 2*9-9));

dX <= SIGNED (‘0’ & line_buffer2(N*9-2 downto N*9-9)) - SIGNED

(‘0’ & line_buffer2((N-2)*9-2 downto (N-2)*9-9));

if (abs(dY) > abs(dX) and (dY(8) = ‘0’) and (dX(8) = ‘0’)) or (abs

(dY) > abs(dX) and (dY(8) = ‘1’) and (dX(8) = ‘1’)) then

phase <= “00”;

end if;

if (abs(dX) > abs(dY) and (dY(8) = ‘0’) and (dX(8) = ‘0’)) or (abs

(dX) > abs(dY) and (dY(8) = ‘1’) and (dX(8) = ‘1’)) then

phase <= “01”;

end if;

if (abs(dX) > abs(dY) and (dY(8) = ‘1’) and (dX(8) = ‘0’)) or (abs

(dX) > abs(dY) and (dY(8) = ‘0’) and (dX(8) = ‘1’)) then

phase <= “10”;

end if;

if (abs(dY) > abs(dX) and (dY(8) = ‘1’) and (dX(8) = ‘0’)) or (abs

(dY) > abs(dX) and (dY(8) = ‘0’) and (dX(8) = ‘1’)) then

phase <= “11”;

end if;

elsif line_buffer2(N*9-1) = ‘1’ then

dY <= “000000000”;

dX <= “000000000”;

end if;

done_pipe(0) <= START_wre;

done_pipe(1) <= done_pipe(0);

done_pipe(2) <= done_pipe(1);

temp <=done_pipe(2);

end if;

end process Y_p;

debug: process (CLK, reset)

begin

if reset = ‘1’ then

j <=0;

elsif (clk’event and clk = ‘1’) then

--

In case of processing data from the previous gaussian block it writes

the magnitude results when there is valid data on the third buffer

if line_buffer2((N-1)*9-1) = ‘1’ and j < N*N and done_pipe(1) = ‘1’ then

j <=j + 1;
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end if;

end if;

end process debug;

--

In case of processing data from the previous gaussian block it writes

the magnitude results when there is valid data on the third buffer

start_next <= temp when line_buffer2((N-1)*9-1) = ‘1’;

magn <= std_logic_vector (unsigned(abs(dX)) + unsigned(abs

(dY))) WHEN (line_buffer3(1*9-1) = ‘1’) ELSE

“000000000”;

start_wre <= start when J < (N-1)*N-1 or j >=N*N else

temp;

y_wre <= y when J < (N-1)*N-1 else

“00000000”;

end Behavioral;

——————————————————————————————————————————————————————————————————————

——————————————Description of the Gaussian filter logic block—————

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

entity Gauss_Filter is

Port( Start : in std_logic;

Reset : in std_logic;

Clk : in std_logic;

y : in std_logic_vector(7 downto 0);

gauss_ready: out std_logic;

start_next: out std_logic;

gauss : out std_logic_vector (7 downto 0)

);

end Gauss_Filter;

architecture Behavioral of Gauss_Filter is

CONSTANT G_1379: UNSIGNED (7 downto 0) : = TO_UNSIGNED(21,8);

CONSTANT G_2468: UNSIGNED (7 downto 0) : = TO_UNSIGNED(31,8);

CONSTANT G_5: UNSIGNED (7 downto 0) : = TO_UNSIGNED(48,8);

constant N : integer: = 10;

CONSTANT PIPE_LEVEL : integer: = 3;

signal line_buffer1 : std_logic_vector

(N*9-1 downto 0): = (Others => ‘0’);

signal line_buffer2 : std_logic_vector

(N*9-1 downto 0): = (Others => ‘0’);
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signal line_buffer3 : std_logic_vector

(3*9-1 downto 0): = (Others => ‘0’);

signal sum1,sum2,sum3,sum4,sum5,sum6,sum7,sum8,sum9,adder1,

adder2 : UNSIGNED(23 downto 0);

signal j : integer range 102 downto 0: = 0;

signal done_pipe: std_logic_vector (PIPE_LEVEL-1 downto 0):

= (others => ‘0’);

signal start_wre,temp : std_logic;

signal y_wre : std_logic_vector(7 downto 0);

begin

gaussian : process (CLK, reset)

VARIABLE Q1,Q2,Q3 : std_logic_vector(8 downto 0);

begin

if reset = ‘1’ then

line_buffer1 <= (others => ‘0’);

line_buffer2 <= (others => ‘0’);

line_buffer3 <= (others => ‘0’);

elsif (clk’event and clk = ’1’) then

if start_wre = ‘1’ then

if start_wre = ‘1’ then

Q1 : = start_wre & y_wre;

Q2 : = line_buffer1(8 downto 0);

Q3 : = line_buffer2(8 downto 0);

else

Q1: = “000000000”;

Q2: = “000000000”;

Q3: = “000000000”;

end if;

line_buffer1 <= Q1 & line_buffer1(N*9-1 downto 9);

line_buffer2 <= Q2 & line_buffer2(N*9-1 downto 9);

line_buffer3 <= Q3 & line_buffer3(3*9-1 downto 9);

end if;

if (line_buffer3(8) = ‘1’) then --and (j/= 20) and (j/= 21)

and (j/= 30) and (j/= 31)and (j/= 40) and (j/= 41)and (j/= 50)

and (j/= 51)and (j/= 60) and (j/= 61)and (j/= 70) and (j/= 71)

and (j/= 80) and (j/= 81)then

sum1 <= UNSIGNED(X“00” & line_buffer1(N*9-2 downto N*9-9))

*G_1379;

sum2 <= UNSIGNED(X“00” & line_buffer1(N*9-11 downto N*9-18))

*G_2468;
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sum3 <= UNSIGNED(X“00” & line_buffer1(N*9-20 downto N*9-27))

*G_1379;

sum4 <= UNSIGNED(X“00” & line_buffer2(N*9-2 downto N*9-9))

*G_2468;

sum5 <= UNSIGNED(X“00” & line_buffer2(N*9-11 downto N*9-18))

*G_5;

sum6 <= UNSIGNED(X“00” & line_buffer2(N*9-20 downto N*9-27))

*G_2468;

sum7 <= UNSIGNED(X“00” & line_buffer3(3*9-2 downto 3*9-9))

*G_1379;

sum8 <= UNSIGNED(X“00” & line_buffer3(2*9-2 downto 2*9-9))

*G_2468;

sum9 <= UNSIGNED(X“00” & line_buffer3(9-2 downto 9-9))*G_1379;

adder1 <= sum1 + sum2 + sum3 + sum4 + sum5;

adder2 <= adder1 + sum6 + sum7 + sum8 + sum9;

elsif line_buffer2(N*9-1) = ‘1’ then

adder2 <=(others => ‘0’);

adder1 <=(others => ‘0’);

sum1 <= (others => ‘0’);

sum2 <= (others => ‘0’);

sum3 <= (others => ‘0’);

sum4 <= (others => ‘0’);

sum5 <= (others => ‘0’);

sum6 <= (others => ‘0’);

sum7 <= (others => ‘0’);

sum8 <= (others => ‘0’);

sum9 <= (others => ‘0’);

end if;

--done_pipe(0) <= START_wre;

--done_pipe(1) <= done_pipe(0);

--done_pipe(2) <= done_pipe(1);

--gauss_ready <= done_pipe(2);

--temp <=done_pipe(2);

end if;

end process gaussian;

end process gaussian;

process (CLK, reset)

begin

if reset = ‘1’ then

done_pipe(0) <= ‘0’;

done_pipe(1) <= ‘0’;

done_pipe(2) <= ‘0’;
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gauss_ready <= ‘0’;

temp <= ‘0’;

elsif (clk’event and clk = ‘1’) then

done_pipe(0) <= START_wre;

done_pipe(1) <= done_pipe(0);

done_pipe(2) <= done_pipe(1);

gauss_ready <= done_pipe(2);

temp <=done_pipe(2);

end if;

end process;

deb: process (CLK, reset)

begin

if reset = ‘1’ then

j <=0;

elsif (clk’event and clk = ‘1’) then

if line_buffer2((N-1)*9-1) = ‘1’ and (j < N*N) and done_pipe

(2) = ‘1’ then

j <=j + 1;

end if;

end if;

end process deb;

start_next <= temp when line_buffer2((N-1)*9-1) = ‘1’;

gauss <= std_logic_vector(adder2(15 downto 8)) WHEN (line_buffer3

(1*9-1) = ‘1’) ELSE

“00000000”;

--gauss <= std_logic_vector(adder2(15 downto 8));

start_wre <= start when J < (N-1)*N-1 or j >=N*N else

temp;

y_wre <= y when J < (N-1)*N-1 else

“00000000”;

end Behavioral;

——————————————————————————————————————————————————————————————————————

——————— Structural description of the Canny edge detector ———————————

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
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entity proc_chain is

port (

CLk : in std_logic;

Start : in std_logic;

Reset : in std_logic;

Y : in std_logic_vector (7 downto 0);

EDGE : out std_logic_vector (8 downto 0);

EDGE_valid : out std_logic;

send_READY: out std_logic

);

end proc_chain;

architecture Behavioral of proc_chain is

component gauss_filter

PORT(

Start : in std_logic;

Reset : in std_logic;

Clk : in std_logic;

y : in std_logic_vector(7 downto 0);

start_next: out std_logic; -- wired

gauss_ready : out std_logic;

gauss : out std_logic_vector (7 downto 0));

end component;

component Y_filter

PORT(

Start : in std_logic;

reset : in std_logic;

clk : in std_logic;

y : in std_logic_vector(7 downto 0);

start_next: out std_logic;

phase : out std_logic_vector (1 downto 0);

magn : out std_logic_vector (8 downto 0));

end component;

component suppression

Port( Start : in std_logic;

reset : in std_logic;

clk : in std_logic;

data : in std_logic_vector(8 downto 0);

phase : in std_logic_vector (1 downto 0);

edge_valid : out std_logic;

edge : out std_logic_vector (8 downto 0));

end component;
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CONSTANT PIPE_LEVEL : integer: = 3;

signal gauss_wre : std_logic_vector (7 downto 0);

signal magn_wre : std_logic_vector (8 downto 0);

signal phase_wre: std_logic_vector (1 downto 0);

signal gauss_ready_wre: std_logic;

signal start2: std_logic;

signal start3: std_logic;

begin

uut1: Gauss_filter PORT MAP (

CLK => CLK,

START => START,

reset => reset,

y => y,

start_next => start2,

gauss_ready => gauss_ready_wre,

gauss => gauss_wre);

uut2: Y_filter PORT MAP (

CLK => CLK,

START =>START2,

reset => reset,

y => gauss_wre,

start_next => start3,

phase => phase_wre,

magn => magn_wre);

uut3: suppression PORT MAP (

Start => START3,

CLK => CLK,

reset => reset,

data => magn_wre,

phase => phase_wre,

edge_valid => EDGE_VALID,

edge => EDGE

);

send_ready <=gauss_ready_wre;

end Behavioral;
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Chapter 5
Hardware Architectures for Iterative
Algorithms Implementations

Equalities which contain functions of one or two variables and their partial
derivatives are called partial differential equations (PDE). They are used to describe
various phenomena such as heat propagation, sound or elasticity. They are also
applied in image processing for smoothing and restoration purposes. Curves, sur-
faces or even the image itself are evolved according to PDE in such manner that the
desired effect is obtained on the original image. Considering the discrete infor-
mation found in digital images, these types of PDE filters are implemented using
finite differences approximations of partial derivatives and iterative algorithms. The
iterative nature of the PDE implementations represents a major disadvantage which
leads to increased processing time in case of increased size images, or when several
images need to be processed simultaneously. In this chapter two image processing
applications which make use of PDE are described: shock filters applied in
microarray image processing and anisotropic diffusion filter applied in satellite
imagery. Their main disadvantage is increased computational time due to the
iterative algorithms used for PDE implementation. In order to overcome it, appli-
cation specific architectures are proposed for both the shock filter and the aniso-
tropic diffusion filter.

5.1 Hardware Architecture for Shock Filters Applied
in Microarray Image Processing

5.1.1 Partially Differential Equations in Image Processing

The effective use of PDEs in image processing can be credited to the fact that PDEs
belong to one of the most important field of mathematical analysis and PDEs are
strongly related to the physical world. Initially, PDE were used in physics and
mechanics, e.g., the Maxwell equations in electromagnetics and Schrodinger



equations in quantum mechanics. Nowadays, due to their power to describe and
model dynamic processes (e.g. heat and sound propagation, fluid dynamics, etc.)
they can be found in other fields such as biology, finance, artificial intelligence and
computer science.

Images can be defined as a digital representation of a scene; consequently, its
definition domain is represented by a discrete plane of points, called pixels.
Therefore, a gray-level digital image will be equivalent to a function of spatial
coordinates (x, y) and time t. PDE modeling of an image is achieved by means of a
PDE function which has the luminance function and its partial derivatives as
arguments.

Let I0(x,y) be the luminance intensity value associated with the pixel of coor-
dinates (x, y) of the image I0. The PDE filtered image represents a solution of the
partial differential equation Eq. (5.1) at a given instant of time t, where F represents
a function of the original image I0 and its spatial partial derivatives.

@I
@t ¼ FðIðx; y; tÞÞ
Iðx; y; 0Þ ¼ I0ðx; yÞ

�
ð5:1Þ

As an example, a reinterpretation of the gauss filtering can be done using PDE.
Thus, PDE techniques consider the original image as initial state of a parabolic
(diffusion-like) process, and extract the filtered versions from its temporal evolution
according to the parabolic differential equation. The diffusion-like process (i.e. the
heat propagation) is described by the Eq. 5.2, where a is a positive constant called
diffusivity and r2 is the Laplace operator.

@I
@t

� ar2I ¼ 0 ð5:2Þ

The main disadvantage of the isotropic diffusion performed by the Eq. 5.2 is that
the filtering is performed in all directions, leading to contour smoothing. In the
context of image processing applications such as feature extraction, any filter needs
to preserve edge information. Thus, the proposed isotropic diffusion produces an
unwanted effect by performing diffusion indiscriminately and altering the contours.

5.1.2 Shock Filters

By adding edge enhancement characteristics to the isotropic diffusion filtering leads
to an image filtering method which performs the noise removing task whereas the
edges are preserved. Such nonlinear filtering methods were proposed by by Osher
and Rudin [1] for edge enhancement of blurry images and Perona and Malik [2] for
anisotropic diffusion. The method proposed by Osher and Rudin is also known as
shock filter.
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Shock filters generally serve as an edge enhancing algorithm. Aiming blurry
edge enhancement, Osher and Rudin proposed the first shock filter formulation
based on a hyperbolic partial differential equation. The general one-dimensional
(1D) shock filter model is described by Eq. (5.3), under the initial conditions U
(x,0) = U(x) and with the operator F fulfilling the following conditions: F(0) = 0
and F(s) � sign(s) � 0. The Ux and Uxx represent respectively, the first and the
second order derivatives. By choosing FðsÞ ¼ �signðsÞ, we obtain the classical
shock filter Eq. (5.4).

@U
@t

þFðUxxÞ Uxj j ¼ 0 ð5:3Þ

Ut ¼ �signðUxxÞ Uxj j ð5:4Þ

A direct approach for numerically discretizing the classic shock filter is using the
finite difference schemes for numerically approximating partial derivatives. The
central difference approximation is performed using symmetrical approximation.
For example, the approximation for the first order derivative of Uðx; tÞ is given by
Eq. (5.5).

@Uðx; tÞ
@x

¼ Uðxþ k; tÞ � Uðx� k; tÞ
2 kj j ð5:5Þ

The aforementioned discretization scheme is not suitable since the shock filter
model is an inverse of the diffusion equation, well known for its inherent instability.
In overcoming this problem, Osher and Rudin propose the explicit discretization
scheme detailed in Eq. (5.6), which preserves total variation and local extrema.

UðiÞnþ 1 ¼ UðiÞn � Dt � DUðiÞnj j � signðD2UðiÞnÞ ð5:6Þ

For a better understanding, in Eq. 5.6 the D and D2 operators are described in
Eq. (5.7):

DUðiÞn ¼ mðDþUðiÞn;D�UðiÞnÞ
D2UðiÞn ¼ ðDþD�UðiÞnÞ ð5:7Þ

where m(x,y) is the “minmod” function:

mðx; yÞ ¼ ½signðxÞþ signðyÞ� �minð xj j; yj jÞ ð5:8Þ

and D� is:

D� ¼ �ðUði� 1Þ � UðiÞÞ ð5:9Þ
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In order to visualize the effect of the shock filters on an un-dimensional profile,
the time evolution of the original profile U at different time scales t (see Eq. 5.4) is
illustrated in Fig. 5.1. U1 represents the original profile, whereas Un represents the
shock filtered profile after t = 1…n iterations.

5.1.3 Shock Filter Application—Microarray Grid
Alignment

Microarray technology is described in detail in the introductory section of this
chapter. Its main objective is gene expression levels estimation which is performed
as follows: gene specific probes from target and reference tissue samples labeled
with two fluorescent markers are hybridized on the same glass slide. The specific
probes together with their microscopic slide are called microarrays. The whole
human genome which includes a number of approximately 44,000 genes can be
printed on a microarray. Using double laser scanning, the microarray scanner scans
the microarray slide and produces two microarray images, one for each fluorescent
label. Each microarray image represents a collection of microarray spots, each spot
determining the gene expression levels for a specific gene (e.g. in case of the target
sample, its corresponding fluorescent label produces the microarray image I; within
the image I, each spot represents the expression level of the represented gene). In
order to determine the expression levels for each gene, the precise location of each
spot within the microarray image has to be determined. The determination of
microarray spots locations is considered the first image processing task within the
microarray image processing workflow. This specific task is known as grid
alignment or it can be simple called (a) gridding. An accurate determination of the
gene expression level is a crucial step and involves also (b) spot segmentation, to
classify pixels either as foreground, representing the DNA spots, or as background
and (c) extraction of intensity, of each spot and its individual background. Results
of the image analysis are the layout of the spot array, the spot sizes and shapes, the
spot intensities (i.e., gene expression levels), and the background intensity values.

(a) Grid alignment assigns logic coordinates to each spot, or, in other words,
determines the borderlines between adjacent rows or adjacent columns of spots,
which leads to the determination of a rectangular area containing the microarray
spot (see Fig. 5.2).

(1)
(2)

Fig. 5.1 1-Dimensional profile Ut evolution corresponding to the shock filter equation described
in 5.4; (1) represents the original profile U(x,0) whereas the resulted shock filtered profile is U(x,n)
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Let us consider the input microarray image I defined by the two-dimensional
array of intensities I = (pu,v). The intensities pu,v are 16 bits integer with a
dynamic range of 0 � pu,v � 216−1. A logarithmic transformation is applied
for contrast enhancement, aiming to underline the weakly expressed spots.
Consequently the I’ image is obtained. On the resulted I’ = (p’x,y) image, grid
alignment is performed by applying the uni-dimensional shock filters on the
image profiles. The horizontal and vertical image profiles are computed as
described by the Eqs. (5.10) and (5.11) respectively.

HðxÞ ¼ 1
dimy

X
y

P0
x;y ð5:10Þ

VðyÞ ¼ 1
dimx

X
x

P0
x;y ð5:11Þ

where dimx and dimy where the dimensions of the microarray image.
A shock filter was applied on the profiles H and V based on the partial dif-
ferential scheme from Eq. (5.6). During shock filter iteration, the profiles
converged to piece-wise constant functions.
The iteration produced discontinuities at positions x1, x2,… xm and y1, y2, …, ym
of the inflection points of the horizontal intensity profle, H, and the vertical
intensity profile V, respectively. The odd and even positions h2i, h2i+1 underline
the gap between two adjacent columns of spots. The center xc = (h2i + h2i+1)/2
is located centrally between adjacent maxima of the profile H, whereas
yc = (y2i + v2i+1)/2, to separate rows of spots. The horizontal and vertical
separation lines determination is lustrated in Fig. 5.3. The grid separates a spot
from its neighbors and cuts the image into small rectangles, each of which
contains a single spot. The resulted microarray grid in case of a microarray
image is presented in Fig. 5.4.

(b) Spot segmentation classifies pixels to foreground and background, corre-
sponding to the microarray spot or to its local background. The segmentation
procedure starts with cutting the image I into sub-images Irow,i and Icolumn,j. The
sub-image Irow,i is the horizontal slice of I that contains the i.th row of spots,

Fig. 5.2 The principle of
grid alignment by delineating
lines and columns of spots
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whereas Icolumn,j contains j.th column of spots (see Fig. 5.5). Once the images
containing rows and columns of spots are determined, horizontal image profiles
and vertical image profiles are computed for Irow,i and Icolumn,j images. These
profiles are once again iterated using the shock filter formalism. The resulted
inflexion point represent the microarray spot horizontal and vertical margins,
leading to the determination of a rectangular area which confines a micraoray
spot as underlined in Fig. 5.5.

(c) Extraction of spot intensity is the last image processing step aiming for gene
expression levels estimation. Pixel intensities, included within the rectangular
area determined as specified in section (b), are assigned to one of the two groups:
foreground (high value) and background (low value). The median intensity of
the foreground pixels is associated with the gene expression levels. Foreground
pixels determination can be performed using various spatial or distributional
image processing techniques, e.g., k-means clustering, active contour.
A detailed approach which makes use of k-means clustering as the segmentation
procedure together with the corresponding results are presented in [3].

0 500

1.5

2
0

1.5

2 x 10
4(a)

(b)

(c)

Fig. 5.3 a Microarray image horizontal profile, b The image profile after aplying shock filters,
c The determination of line segments for separating columns of spots

Fig. 5.4 Resulted grid obtained using shock filters for microaray spot detection on a microaray
image sample
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Notice that, considering the (a) and (b) image processing procedures, the main
computational steps are the PDE-based profiles evolution according to the shock
filter formalism. We estimate the computational complexity for our proposed
approach for automatic grid alignment and segmentation, considering an M � N
pixels size microarray image. The computational steps considering the horizontal
profile computation and evolution are illustrated in Fig. 5.6a For the overall grid
alignment procedure, the computational cost is given by the upper bound function f
(M, N) = 2MN s + 6p(M + N)s, with s representing one computational step, and p
denoting the number of iteration necessary for the profiles evolution. The order of

Irow,i

Icolumn,j

Irow,i

Icolumn,j

A B

A’ B’

(A,Aí)

(B,Bí)

Fig. 5.5 Determination of the rectangular area corresponding to a given microarray spot

Fig. 5.6 Computational steps for microarray grid alignment (left) and for the spot segmentation
procedure (right)
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growth for the computational cost is O(f(M, N)) = 2MN + p(M + N) and represents
the computational complexity of the proposed method.

The computational complexity of our PDE based segmentation procedure was
estimated as follows. Let a and b represent the number of microarray spots on each
line and columns, respectively, and d twice the average microarray spot diameter.
The average width for a line or a column of spots is d. We computed for each spot
line and spot column, the horizontal and vertical image profiles, respectively, with
the total complexity of 2adM +2bdN = 4MN. Shock filters were further on applied
on each of the determined profiles having a complexity of paM + pbN, where paM
represents p iterations performed on a number of a profiles (i.e. one profile for each
line of spots), each profile having the size M. The total computational cost for both
grid alignment and segmentation, led to the order of growth for the total compu-
tational cost for segmentation of 6MN + p(aM + bN).

A comparison with state-of-the art microarray grid alignment and segmentation
procedures is performed, considering the computational complexity. As reported in
[mbec4], the autocorrelation based grid alignment has reduced computational
complexity. Morphological operators for automatic microarray image addressing,
have a computational complexity of O(2SeMN) where Se is the size in pixels
(approx. 103) of the structural element for dilation and erosion. The computational
complexity of the SVM-based approaches [5, 6] is O(MN(M + k)), one order of
magnitude lower than the one associated to the genetic algorithm [7]. The parameter
k represents the number of selected microarray spots to train the SVM. For the fully
automatic microarray grid alignment performed using an optimal multilevel
threshold (OMTG) approach [8], the reported computational complexity is O(tsN2),
where ts denotes the threshold set size.

Regarding the segmentation procedure, the pixel clustering approach achieves
lowest computational complexity by using a k-means clustering algorithm which
has a time complexity of O(rkMN), [9]. Spot segmentation using mathematical
morphology [10] has a computational cost 	 SeMN, due to the morphological
filtering by area opening with a structural element of the size of spot Se used to
detect the initial markers for the watershed transform. The computational com-
plexity of image segmentation using active contours can be reduced to n2MN, as
reported in [11]. The n factor represents the size of a gauss kernel 
 MN.

As denoted by Table 5.1, reduced computational complexity is achieved as
compared to existing approaches. As illustrated by these results, our proposed
approach has reduced computational complexity for both microarray image
addressing and segmentation, being a strong candidate to be integrated in future
software packages. Moreover, the proposed approaches for automatic grid align-
ment and segmentation are of high interest in case of application specific future
devices for microarray image processing. By adding robust processing methods for
gene expression microarray analysis and interpretation [12], future devices for
medical applications which integrate the complete image processing pipeline can be
developed [13].

Considering the benefits of the proposed image PDE-based image processing
approach for grid alignment and segmentation (i.e. low-complexity and accuracy),
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further on is proposed a hardware architecture for uni-dimensional shock filters.
The proposed architecture aims to reduce the computational time, in spite of the
iterative nature of the approach.

5.1.4 Hardware Architecture for Shock Filters

The aplication-specific hardware architecture automaticaly performs the grid
alignment and delivers valuable information for the segmentation procedure. Thus,
a rectangular area containg both the microarray spot (i.e. foreground information)
and its corresponding local background is determined. The functionaity of the
architecture is ilustrated in Fig. 5.7.

Image profiles are computed using the hardware architecture detailed in Chap. 1
and stored in Random access memories as ilustrated in Fig. 5.7. The computed
profiles are stored within the shift register “Buffer 1” for concurential acces of

Table 5.1 Hardware resource usage for the anisotropic diffusion

Grid
alignement

Autocorelation Mathematic
morpjology

SVM OMTG PDE

O(M + N) O(2SeMN) O(MN
(M + k))

O
(tsN

2)
O(2MN + p
(M + N))

Segmentation Pixel
Clustering

Watershed
transform

Active
contours

PDE

O(rkMN) O(SeMN) O
(n2MN)

O(6MN + (p + d)
(aM + bN))
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Fig. 5.7 Hardware architecture for shock filter implementation
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profiles’ values. Using the “Profile divider” logic block, the initial profile of length
L, can be divided into succesive intervals of size n, for further processing. This
division of the profile is performed especially in case of large image profiles (e.g.
microarray image profiles). Timing consderations are also mentioned within the
description. Thus, considering n the profile size, n x Tclk clock periods are necessary
to load the image profiles from RAM to the buffer register. Once the entire profile is
loaded in “Buffer 1” register, a parallel load is performed and a copy of the profile
is found in “Outi−1” register. Whereas a new profile section is loaded into the
“Buffer 1” register, the “Outi−1” and “Outi” make use of spatial parallelism to
perform the computations corresponding to one shock filter iteration as given by
Eqs. (5.12) and (5.13). The aforementioned computation procedure is specific for
the shock filters and is known as the minmod function computation.

Loop k ¼ 1. . .n

rðiÞk \ ¼ rði�1Þ
k þ dt � sgnðrði�1Þ

k� � rði�1Þ
kþ Þ �minðrði�1Þ

k� ; rði�1Þ
kþ Þ ð5:12Þ

rði�1Þ
k \ ¼ rðiÞk ð5:13Þ

End loop;
The logic block assigned to perform the minmod function computation is

depicted in Fig. 5.8. The logic block delivers the resulted rk
i value within p = 3x

Tclk. A number of n instances of the proposed architecture are used for parallel
computation of the rk

i values. Another q = 1 x Tclk is used to create the Buffer 2
register which contains a copy of the Out(i) register for further processing.

In order to have a fully pipelined architecture, the number of iterations i for the
shock filter is chosen as i = n/(p + q). A number of i = 50 iterations was empiri-
cally determined in such manner that the resulted evolved profile underlines the
inflexion points.
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Fig. 5.8 Hardware architecture for minmod function implementation
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5.1.5 Timing Considerations

Once the minmod function computation is described, we can go back to the overall
architecture for the shock filter profile computation (see Fig. 5.8) and clearly
describe the timing consideration. The architecture is fully pipelined, considering
the following stages: stage 1 loads a section of n values from the original image into
the Buffer 1 register; stage 2 performs i = n/(p + q) iterations on the image profile
section of size n; stage 3 stores the resulted shock filtered profile in the RAM
memory. With an initial delay of Δt = 2 x nTclk, the shock filtered 1D profile values
are sequentially stored into the output RAM memory.

Table 5.2 summarizes the hardware resource usage for the proposed architec-
ture. The computational time needed for performing automatic grid alignment and
shock filter based segmentation was estimated in case of Intel Dual core T2370
processor, with a 1.73 GHz clock frequency, 2 GB RAM and Virtex5 platform. In
case of the general purpose processor C code and clock() function were used for
time measurement. The hardware architecture for shock filter implementation was
applied on images containing different number of spots. Let X axis referring to the
dimension of microarray image specified by the number of microarray spots
enclosed and Y axis represents the processing time in microseconds (us). Thus, in
Fig. 5.9 can be observed that, in spite of higher performances provided by the
general purpose processor, the application-specific architectures bring up better
results, considering the computational time used for grid alignment and PDE-based
segmentation.

Table 5.2 Hardware resource usage for uni-dimensional shock filters

No. of shift register
cells (16 bits size)

No. of
multipliers
(16 bits)

No. of LUT based
ROM (256 kb)

No. of
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(16 bits)

640 128 2 512 128
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Fig. 5.9 Computational time for grid alignment and segmentation using a general purpose
processor and Virtex5 FPGA
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5.2 Hardware Architecture for Anisotropic Diffusion
Applied in Satellite Imagery

5.2.1 Introduction to Satellite Imagery

Satellite and aerial images have many useful applications in fields such as agri-
culture, forestry, geology, meteorology, mass-media or regional planning. Software
developers incorporate satellite imagery into stand-alone platforms or even hand
held devices. Thus, satellite imagery is combined with GPS and electronic maps
creating geographic information systems which lead to the real time localization of
various targets (objectives) within specific areas. The most popular example of this
is the Google Earth application, which recently made commercial satellite imagery
freely available to almost anyone on the planet. Some of the industries also benefit
from Google Earth services. The presence of satellite and aerial images on the
Internet provides an opportunity for exponential growth and various benefits for
both private and public sectors.

Satellite imagery is commonly compared with classic imagery. Regular photo-
graphic cameras store information about the portion of light called “light visible”.
The information is stored as images, and represents the interaction of the visible
light with the area under analysis. The human eye quantizes the interaction of
visible light with different targets in a similar manner in order to provide us visual
images. Using various sensors, satellites are sensitive to other parts of the elec-
tromagnetic spectrum, such as infrared, ultraviolet or microwaves. The sensors
measure “light” (i.e. electromagnetic radiation emitted by earth) and use computer
programs for creating images. An in depth view of how satellites acquire images is
as follows: an energy source emits a radiation which interacts with the atmosphere
and then reaches the target; the target, depending on its characteristics, reflects the
radiation to the sensor which registers it and creates a digital image. Image data are
recorded at different spatial, spectral and temporal resolutions. The interpretation of
the image leads to the characterization of the target and to discovery of the desired
aspects related to the target under analysis.

There are various applications of satellite image data, from environmental
monitoring (e.g. indirect solar radiation measurements [14], climate change mea-
surements [15] to natural disaster monitoring and mitigation [16]). For satellite
image analysis and interpretation, various image processing techniques are avail-
able, from simple convolution for edge detection to complex partial differential
equations or neural networks for the same edge detection task. Partial differential
equations (PDE) have various applications in image processing and computer
vision.

The increased number of high resolution satellites launched into orbit and the
increased number of applications which use satellite images creates the premises for
a large amount of high-resolution image data to be processed. Perona and Malik
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filter is commonly used in image processing application and it is known as a
computationally expensive approach due to its iterative PDE-based implementation.
A challenge in recent research is to develop high performance computing models
for satellite image processing [17, 18]. Parallel computing principles such as LUT
(look-up-tables) were used for high performance computing in solar surface irra-
diance estimation [19]. Further on we briefly described the Perona and Malik filter
formulation and applications together with FPGA-based application-specific hard-
ware architecture for fast and efficient Perona and Malik filter implementation. The
benefits of the proposed architecture regarding computational time, together with
the results of anisotropic diffusion in case of satellite images containing solar
surface irradiance levels are detailed. Satellite images were chosen for exemplifi-
cation of the anisotropic diffusion and its hardware implementation, due to their
intensive use and increased size.

5.2.2 Perona and Malik Filter Formulation

PDEs are used to describe a wide variety of phenomena such as sound, heat,
electrodynamics, fluid flow, elasticity, or quantum mechanics. In image processing
they are mainly used for smoothing and restoration purposes. Their main advan-
tages are the reinterpretation of several classical methods - such as gauss convo-
lution, median filtering, dilation or erosion. This understanding has also led to the
discovery of new methods for shape simplification, structure preserving filtering,
and enhancement of different structure types. Aiming edge enhancement, typical
PDE techniques consider the original image as initial state of a parabolic
(diffusion-like) process, and extract the filtered versions from its temporal evolution
according to the parabolic differential equation.

The physical idea behind diffusion processes is that it describes the distribution
of intensity (e.g. variation in temperature or variation of luminance information—
pixel intensity in case of image processing) in a given region over time. The
diffusion is known as a physical process that equilibrates concentration differences
(i.e. luminance information in image processing) without creating or destroying
mass. The mathematical formulation is given by the following equilibrium
property [2]:

j ¼ �D � ru ð5:14Þ

D is a diffusion tensor represented by a positive symmetric matrix, which
establishes the relation between the concentration gradient ∇u and a flux j which
aims to compensate for this gradient. In case j and ∇u are parallel, the diffusion is
called isotropic. The property of the diffusion of not to destroy mass/information is
expressed by the continuity Eq. (5.15).
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@tu ¼ �div j ð5:15Þ

Considering all of the above, the diffusion equation is given by the time
dependent Eq. (5.16). Considering the diffusion tensor, if it depends on the image
ut which evolves in the time domain, the diffusion is called non-linear. Moreover, if
the diffusion tensor D is constant over the whole image domain, the diffusion is
considered homogeneous or isotropic, whereas a space-dependent diffusion tensor
is called inhomogeneous or anisotropic.

@tu ¼ divðD � ruÞ ð5:16Þ

Anisotropic diffusion for edge enhancement.
Perona and Malik [2] propose a nonlinear diffusion method which preserves the

edge information. For avoiding the blurring at edge locations, the inhomogeneous
diffusion process reduces the diffusivity at those locations which have a larger
likelihood to be edges. The probability for a specific area to be edge is denoted by
|∇u|2. Consequently, the Perona–Malik equation is (5.17).

@tu ¼ divðgðjruj2Þ � ruÞ ð5:17Þ

where the diffusivity function g is to be anisotropic, such that, along some direc-
tions g(|∇u|2) = g(s) 	 1 (strong diffusion) while along other directions g(s) 
 1
(weak smoothing).

The use of the Eq. (5.17) is motivated by the physical fact that, under g � 1 it
describes the heat propagation. The solution of the heat equation is a convolution of
the initial value u(x, 0) = f(x) with a Gauss distribution function. Since the latter is
decreasing fast (both in the coordinate and the frequency spaces), the fast oscilla-
tions are cut out, hence (10) acts as an effective low pass filter.

The digital image processing based on the Eq. (5.17) is motivated by the fol-
lowing considerations. There is a bounded domain of the digital image, X � Rn

(n = 2, 3) of boundary ∂X of class C1. The mapping u: X ! [0, 1] then achieves
the correspondence from X to the gray level distribution (GLD) of a noisy image.
The numerical investigation of the time evolution of the GLD, performed through
an iterative approach, results in successive instances attempting at solving the
filtering tasks.

There are two contradictory features of the gauss smoothing associated to the
heat propagation: efficient noise filtering and image blurring, which results in quick
loss of essential information contained in the original image. In order to take
advantage of both features, a well posed condition problem arises. The flux function
U(s) = s � g(s2) > 0 for s 2 (0, +∞) is wanted to vary smoothly with s and to have a
maximum on (0, +∞) at some characteristic value s0 = k > 0. The diffusivity
function g(s2) enabling such U(s) should be infinitely continuous differentiable and
to decrease monotonically from 1 to 0 while s2 varies from 0 to +∞. Two choices
of g are given by Eqs. (5.18) and (5.19), respectively.
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gðs2Þ ¼ 1

1þ s2k2
ð5:18Þ

gðs2Þ ¼ e�s2k2 ð5:19Þ

In case of Eq. (5.19) U(s) has a maximum at |s| = k, with U′(s) > 0 for |s| < k
and U′(s) < 0 for |s| < k.

In the two-dimensional case, let n and η denote the local coordinates in direc-
tions perpendicular and parallel to ∇u respectively. Then the Perona-Malik equation
can be rewritten as Eq. (5.20).

@tðuÞ ¼ gð ruj j2Þunn þU0ð ruj jÞugg ð5:20Þ

The coefficient of unn is always positive, hence (5.17) acts as a smearing filter
washing details along the contour lines of the function u. The coefficient of uηη may
be both positive and negative, hence, in the perpendicular (gradient) direction, slow
gradient values are smeared out, while large gradient values (like edges) are
sharpened instead of being blurred.

Both conduction coefficients lead to stable edges during image evolution.
Regarding the difference between the two equations, wide regions are privileged
over the smaller ones in case of Eq. (5.18), whereas high-contrast edges are priv-
ileged over low-contrast ones in case of Eq. (5.19).

Results of the conventional anisotropic diffusion (Perona and Malik) upon a gray
scale image aiming edge enhancement are presented next. A 2D network structure
of 8 neighboring nodes is considered for diffusion conduction. The parameters to be
chosen for the diffusion are the number of iterations N, integration constant DT
which is set usually to maximum value and the gradient modulus threshold that
controls the conduction denoted by k. Examples of how the filtering is performed
on solar surface irradiance images are presented next. Both the conduction coeffi-
cients from Eqs. (5.18) and (5.19) were applied on the same satellite image,
whereas the number of iteration, the integration constant and the gradient threshold
yield the same values. The resulted images are shown in Fig. 5.10a, b, respectively.
The same image details corresponding to the diffusion Eqs. (5.18) and (5.19) are
illustrated in Fig. 5.10c, d.

As underlined in Fig. 5.10, the advantages of the proposed diffusion techniques
are that edges remained stable over a very long time. It was demonstrated that edge
detection based on this process clearly outperforms the linear Canny edge detector,
even without applying non-maxima suppression and hysteresis thresholding. This is
due to the fact that diffusion and edge detection are integrated in one single process
instead of being treated as two independent processes subsequently applied. On the
other side, the disadvantage of the Perona and Malik filter is the computational
complexity of the iterative filtering which leads to increased computational time in
case of real time processing or in case large amount of image data needs to be
processed.
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5.2.3 Hardware Implementation for Parallel Computation
of Anisotropic Diffusion

Let I = (pi,j) be the two dimensional array of intensities corresponding to the
intensity levels within a grayscale satellite image I. Aiming noise removal and edge
enhancement, anisotropic diffusion is applied and Idiff is obtained by evolving the
original satellite image I, according to the diffusion process described by Eq. (5.16).
Considering the discrete nature of the information within satellite image I, the
aforementioned image is evolved using the discrete process described in the fol-
lowing section.

Let t = 1…N be the total number of iterations considered for the diffusion
process. One of the iterations involves the following three steps:

• Step 1: for each pixel intensity pi,j, using finite difference approximations, image
gradients were computed on 8 different directions, relative to the cardinal
directions (i.e. N, W, S, E) and intermediate cardinal directions (NW, NE, SW,
SE). Thus, the gradients are denoted by η, whereas a lower index denotes the
gradient directions (e.g. ηNW is the gradient on the NW direction computed by
ηNW = pi−1,j − 1 − pi,j).

• Step 2: diffusion function c is evaluated for each direction, based on the com-
puted gradient on the same direction:

cN ¼ e�ðgN=kÞ2 ð5:21Þ

(a) (b)

Fig. 5.10 Anisotropic diffusion applied for edge a Num_iter = 25, Kappa = 10,
b Num_iter = 15, Kappa = 30, c Num_iter = 15, Kappa = 30, d Num_iter = 25, Kappa = 30
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• Step 3: the pixel intensity pi,j
t+1 within the resulted image Idiff after one complete

iterations is computed as denoted by Eq. (5.13).

ptþ 1
i;j ¼ pti;j þ cNgN þ cSgS þ cEgE þ cWgW þ . . .

þ 0:5cNEgNE þ 0:5cSEgSE þ 0:5cNWgNW þ 0:5cSWgSW
ð5:22Þ

To perform the aforementioned computational steps, a custom processing
hardware architecture was developed in order to achieve high-throughput (see
Fig. 5.11). Steps 1, 2 and 3 are parallelized for efficient computation using field
programmable gate arrays (FPGAs) which enable spatial and temporal parallelism
to be applied using the application specific hardware architecture development.

The functionality of the architecture for anisotropic diffusions is described. One
of the iterations of the diffusion process is composed of five independent processing
stages. The time intervals Δt1 to Δt5 correspond to the computational stages and
they are performed by the proposed architecture as detailed in the Fig. 5.11. The
digital logic elements for the processing steps are separated by vertical dashed lines.

Let M and N be the horizontal and vertical image size. The first computational
stage within iteration t performs a local caching operation; 2M + 3 pixel intensity
pi,j
t values are stored sequentially in a shift register.
The second computational stage (Δt2) calculates image gradients in different

directions using finite difference approximation. The gradient values (e.g. ηNW
gradient on the NW direction) are stored in an intermediate register RegA to be used
for further computations. The size of RegA is 8, as the number of all the gradient
values η. The ηN, ηNW… ηW are computed in parallel using multiple sign adders.
(e.g. ηN = pi,j

t
− pi-1,j

t )
The third stage computes for each gradient values η stored in RegA its corre-

sponding diffusion coefficient c (e.g. cNW corresponds to the ηNW gradient value—
see Eq. (5.14)). The computation of the exponential function is performed using
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Fig. 5.11 Hardware Architecture for parallel Perona and Malik filtering
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linear approximations. Such architecture is detailed in Chap. 3. The hardware
implementation for diffusion function computation makes use of a look-up-table
LUT-based ROM in order to store Ai(xi, yi) and mi values; Ai represents diffusion
function values whereas mi is the slope of two adjacent points Ai and Ai+1. These
values are stored in EXP and SLOPE ROM memory. The processing unit for
computing the diffusion coefficient is called LAEX (Linear Approximation
Exponential) and delivers the exponential functions results according to Eq. (5.23).

f ðxÞ ¼ ex ¼ miðx� xiÞþ yi ð5:23Þ

The resulted diffusion coefficients c are stored in the RegB register and use
further on to compute the output pixel intensity values pi,j

t+1 which represents the
pixel intensity values from the diffused image obtained at the end of iteration t.

The fourth stage computes the products between the register RegA[i] values and
the computed diffusion coefficients c. A number of 8 multipliers are used in parallel
for the aforementioned computation. The results simultaneously delivered by the
multipliers are summed as described by the Eq. 5.15.

The fifth stage delivers the pixel intensity values pi,j
t+1 of the output image at the

end of the iteration t of the diffusion process.
Timing considerations for the proposed architecture are discussed next. Each

pixel p(i,j) from the image to be filtered is delivered each 3xTclk cycles to the
anisotropic diffusion architecture. The time intervals Δt1 to Δt5, equal to 3xTclk each,
allows the computational stages to be fully pipelined. Consequently, after an initial
delay the pixel intensity values from the output image are delivered sequentially
each 3xTclk cycles. Table 5.3 illustrates the hardware resource usage for the pro-
posed architecture for anisotropic diffusion implementation, considering a
1024 � 1024 gray-scale image.

5.2.4 Application-Specific Hardware Architecture
for Perona and Malik Filter in Satellite
Imagery—Case Study

The increase of the number of high resolution satellites into orbit and the number of
applications which use satellite images leads to “big data” to be processed, which
cannot be accommodated to the satellite’s local computing infrastructures. The
present section focuses on the importance of the proposed high-throughput com-
puting architectures for processing satellite images. Consequently, the hardware

Table 5.3 Hardware resource usage for the anisotropic diffusion

No. of shift register cells
(16 bits size)

No. of multipliers
(16 bits)

No. of LUT based
ROM (512 kB)

No. of adders
(16 bits)

2.1 k 16 16 24
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architecture for the iterative Perona and Malik filter is presented in the context of
the existing grid computing facilities, with regards to the computational time. In
what follows, a description of grid-based solutions for satellite image processing is
detailed.

The Large Hadron Collider (LHC) Grid is an emerging infrastructure developed
by CERN that provides access to computing power and data storage distributed
over the globe [http://wlcg-public.web.cern.ch/]. The grid infrastructure is orga-
nized according to a four tiered [20, 21]. A primary backup will be recorded on tape
at CERN, the “Tier-0” centre of LCG (Grid). After initial processing, this data will
be distributed to a series of Tier-1 centers, large computer centers with sufficient
storage capacity for a large fraction of the data, and with round-the-clock support
for the Grid. The Tier-1 centers will make data available to Tier-2 centers, each
consisting of one or several collaborating computing facilities, which can store
sufficient data and provide adequate computing power for specific analysis tasks.
Individual scientists will access these facilities through Tier-3 computing resources,
which can consist of local clusters in a University Department or even individual
PCs, and which may be allocated to LCG on a regular basis.

In what follows it is described how the LCG Grid operates. The process begins
with an individual user accessing a user interface (UI) through a personal account,
with a user security certificate installed. The user describes a job that will run on the
Grid. The job arrives at the Resource Broker (RB). A set of services running on the
RB machine contribute to match job requirements to the available resources,
schedule the job for execution to an appropriate Computing Element (CE). Each
output of the user job performed by the CE is stored on a Grid Storage Element
(SE). The computing elements are based on Intel Xeon Processors E5 families [22].
They are composed of up to 12 execution cores, each one supporting two threads.
Regarding memory interfaces, the integrated memory controller supports 4 different
64 bits memory channels, whereas the processor frequency is up to 3 GHz.
Following this approach, satellite images could be uploaded to the LHC Grid where
they could be stored and processed, freeing up the satellite local computing
resources. Additional processing strategies can be considered in case of satellite
images. Thus, supplementary computational power can be added through
application-specific architectures, using existing technologies such as FPGA or
GPU (Graphic Processing Units). Both approaches make use of spatial and tem-
poral parallelism in order to improve the computational performances for image
processing algorithms.

Further on, the anisotropic diffusion algorithm is used for the exemplification of
the speed-up factor introduced by the proposed application-specific hardware
architecture, as compared to a general purpose processor (i.e. Xeon-based com-
puting element). A detailed description of the algorithm is presented in Sect. 5.2.3.
We consider one computational step to be composed of a memory read operation
mR, arithmetic operation oALU performed by arithmetic logic unit ALU or a memory
write mW operation. Let C be the total number of computational steps necessary for
one of the iterations of the anisotropic diffusion algorithm. Let fx = 3 GHz and
fa = 0.3 GHz be the clock frequencies of the Xeon-based computing element and of
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the Virtex 5 FPGA, respectively. Moreover, let S = M � N pixels be the size of the
gray-scale image onto which the number of C computational steps are applied.
Taking into account that multiple architectures as the one proposed in this chapter
can be instantiated, we perform the speed-up factor computation introduced by our
approach as opposed to one execution core of the Xeon-based computing element.
P � Tclk

x represents the number of clock periods necessary for the C computational
steps performed by the Xeon-based computing element, whereas Q x Tclk

a represents
the number of clock periods necessary for the C computational steps performed by
the proposed application-specific hardware architectures. Consequently, the speed
up factor is given by:

F ¼ P � Tx
clk

�
Q � Ta

clk ð5:24Þ

Considering the proposed architecture, after initial delay of 2M + 15 clock
cycles, pixel intensity values from the resulted image are delivered consequently
each 3xTclk

a clock cycles which leads to a total computational time of Q = 3M �
N + 2M + 15. On the other hand, the Xeon-based computing element performs the
C number of computational steps as follows: 9 mR operations for the current and
neighboring pixels used for the computation, 9 oALU for the finite difference
approximations, 9 oALU operations for exponential function computation, 9 mW
operations together with 9 mR operations for partial computation results storage, 9
oALU operations for multiplication, 9 oALU for the summation of the 9 terms for
computing the resulted pixel intensity value and 1 mW operation.

Taking into account the timing considerations of the proposed architecture and
the aforementioned timing considerations referred to the Xeon-based computing
element, the resulted speed up factor is given by:

F ¼ ð64MxNÞ � f aclk
�ð3MxN þ 2Mþ 15Þ � f xclk ð5:25Þ

Equation (5.25) leads to a speed-up factor F  2.13 for our proposed archi-
tecture as compared to a Xeon-based computing element.

5.3 Conclusions

Two PDE based image processing techniques are described and applied on
microarray images and satellite images, respectively. Thus shock filter are suc-
cessfully applied for microarray grid alignment and anisotropic diffusion is used for
image preprocessing for feature enhancement. Both types of images are of large
size, and, moreover, the algorithms for implementing the aforementioned image
processing techniques are iterative, which lead to increased computational time.
Consequently, hardware architectures are proposed for both shock filter and ani-
sotropic diffusion implementation. The computational time for the proposed
architectures are estimated and compared with state of the art approaches for

160 5 Hardware Architectures for Iterative Algorithms …



parallel computation of image processing tasks. The results show the benefits of
FPGA technology used for efficient implementations of image processing algo-
rithms in terms of processing speed.
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Chapter 6
Efficient Hough Transform
Implementation Using CAM Memories
Applied on Satellite Imagery

Modern human civilization has a significant influence on the Earth, which leads to a
strong need to assess the status of the natural environment. Earth Observation
(EO) through remote sensing satellites gathers reliable information about the
environment and provides the opportunity to minimize the negative impact of
society and to improve social and economic well-being. Nevertheless, the evolution
of satellite instrumentation leads to considerable satellite data volumes which
require algorithms based on mathematics and statistics algorithms to extract valu-
able information, increased computational power for processing and also
high-throughput and secured satellite data transmission for communication. EO
data is commonly represented as satellite images. Image processing techniques
based on partially differential equations (PDE), artificial intelligence (AI) and
feature extraction techniques (e.g. Hough transform) are available for permanent
monitoring of the Earth’s land and oceans. The variety, complexity and the iterative
nature of such image processing algorithms demand also for efficient implemen-
tations in terms of computational power. Consequently, the present chapter pro-
poses a FPGA-based approach for efficient computation of image processing
algorithms applied for satellite image analysis.

The image processing task discussed within this chapter is image segmentation,
using circular Hough transform. The main idea is to extract circular shapes from the
image using the Hough transform. It is well known the increased computational
power needed by the Hough transform, due to recurrent search in the Hough space
of various shapes (e.g. in our case circular objects). In our case, a content
addressable memory (CAM) is proposed for efficient circular feature extraction
from satellite images. Further on, an introduction to satellite imagery for oil slick
detection is presented, followed by the application of Hough transform to satellite
image analysis (detection of seepage oil slicks). The computational time for the
circular feature extraction is estimated and, an approach for efficient feature
extraction based on CAM memories is proposed.



6.1 Satellite Imagery for Oil Slick Detection

Satellite images are known to be very effective at observing oil slick both generated
by oil reservoirs beneath the oceans and by oil spills due to pollution. In case of
beneath the ocean oil reservoirs, the surface expression of how petroleum migrates
from beneath the ocean towards its surface is known as oil seepage. This is helpful
in localizing any sort of oil accumulation beneath the bottom of the oceans. In other
words, the oil is transported towards the ocean surface by oil-coated gas bubbles. At
the surface of the ocean, a thin oil film is formed, whereas gas bubbles are lost in
the atmosphere. The oil film (seep) represents detectable volumes of oil and gas,
which in calm sea conditions are described by concentric shapes that change color
depending on the angle of view. The pollution slicks are thicker than the seepage
slicks, both of them being interpreted as dark patches on the satellite imagery.

Considering image processing algorithms, a topic of current research is to
monitor oil pollution and the sea-surface expression of beneath the ocean oil
accumulation through oil slick detection/segmentation applied on synthetic aperture
radar (SAR) images [1, 2]. Environment monitoring via radar imaging may benefit
from state-of-the-art image processing algorithms based on PDEs for denoising,
fusion and segmentation of satellite data. Sophisticated approaches like neural
networks together with computationally expensive Hough transforms are applied
for segmentation and fault tracking in satellite image data volumes [3–5]. When
satellite image time series are envisaged to extract reliable information, grouped
frequent sequential patterns (SP) are successfully applied for segmentation and
feature extraction [6] and showing great potential in SAR image time series seg-
mentation for oil slicks detection. Considering the complexity of such methods and
the large volumes of available satellite data, parallel and distributed computing
approaches are needed to tackle the Big Data paradigm of satellite data processing
[7]. Consequently, parallel computing approaches are accounted for development of
application specific-hardware architectures for satellite imagery.

We have seen so far that complex image processing algorithms were success-
fully used for the detection of oil slick generated by both pollution and seepages.
Before proposing a solution to improve the computation efficiency of such com-
putationally expensive image processing tasks, we first explain in detail the prin-
ciple of Hough transform and how it is applied for circular feature extraction. In our
case, we aim to detect the oil seepages, which in calm sea conditions are described
by concentric circular shapes on the sea surface. The concentric shapes are visible
as circular dark patches on the satellite images (see Fig. 6.1).

6.1.1 Circular Hough Transform

The circular dark patches on the satellite images are to be localized using the Hough
transform. The basic principle is described next: the Hough transform is a procedure
which detects the occurrences of a shape in an image. The a priori assumption is
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that the shape can be described in a parametric form. Thus, in our case a 2D circle
can be parameterized as denoted by Eq. (6.1).

ðx� aÞ2 þðx� bÞ2 ¼ r2 ð6:1Þ

It is important to know that, the edges within the image to be processed con-
stitute the a priori information for the Hough transform. Thus, an edge detector
operator (e.g. Canny filter) is first use for the identification of image edges, and
consequently the boundaries for the image edges. Once the edges are detected, we
assume that an edge point is part of a circle. This leads to the following case: the
point could belong to a unique family of circles with varying parameters (a, b, r).
The (a, b) represent the centre of the circle whereas r corresponds to its radius. The
procedure of the Hough transform follows next. An accumulator array whose axis
are the (a, b, r) parameters is created. Each determined edge point (xi, yi) votes
within the accumulator array (see Fig. 6.2). At the end of the voting procedure, the
maximum values within the accumulator corresponds to the detected circular shapes
having the (a, b, r) parameters.

As shown before, the basic principle of the Hough transform is not necessary a
very complex one. Nevertheless, the multiple search for circular shapes with var-
ious parameters together with the voting procedure for each circular shape lead to
an increased computational complexity, especially in the case of large size images.
Aiming to overcome this disadvantage, further on we propose an approach for
efficient computation of the Hough transform using FPGA technology.

6.1.2 CAM-Based Approach for Efficient Hough Transform
Implementation

Further on, we focus on the adaptive Hough transform implementation for slick
detection and segmentation, which benefits of the parallel computation capabilities

Fig. 6.1 Example of circular
oil slick generated by oil
seepages
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of the FPGA technology. The main scope is to reduce the computational complexity
of the circular Hough transform. The novelty within the proposed segmentation
approach is represented by the content addressable memory (CAM) used for effi-
cient voting in the Hough space. The approach is used for seepage detection.
Considering the dependency of oil slicks generated by beneath oceans reservoirs on
local wind conditions, a permanent search on satellite SAR images is envisaged in
order to capture the circular gas bubbles accumulation, expressed as circular oil
slicks. Thus the computational cost of image processing methods such as partial
differential equations and Hough is high; consequently a strong motivation for
developing hardware implementation of such algorithms exists.

Thus, for circular oil slicks detection the Hough transform is considered prior to
an edge detection step. The CAM based approach for circular shape extraction
which performs efficient computation of the Hough transform by enhanced memory
access is presented in what follows.

Considering the SAR image space IS = p(x,y) the two dimensional array of pixel
intensity values, we define a circle as (x−a)2 + (y−b)2 = r2 to describe circular
shapes of oil slicks. The Hough transform implementation through CAM memories
is detailed in case of the circular shape detection. Firstly, it is to be mentioned that
CAM memories are known for their special features of returning the address for a
given value found in the memory and delivered at CAM input. Thus, the main
benefit is that no memory search is needed for returning the address of a specific
value from the memory. In our case, multiple CAM memories are used as pro-
cessing elements (PE) which fulfill the following tasks: accumulator for computing
the Hough space through voting and a decision circuit which specifies if voting is
performed or not. For a better understanding, we present in more detail the
approach for parallel computing of Hough transform using CAM memories.

A gradient based approach is used to select edge points (xi.yi) within the image
space. The circle equation is written as the following linear recursive Eq. 6.2.

y

x

(xi,yi)

a

b

(x1,y1)

Image ó edge detection Accumulator array

r

(a) (b)

Fig. 6.2 The Hough transform applied for circular shape detection; a original image with detected
edge, b the accumulator array for the voting procedure
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ðx� a)2 þ y2 ¼ ðr2 � b2Þþ 2by ð6:2Þ

Let the Hough space be the total number of circles determined by the (a,b,r)
parameter space for all the edge points (xi.yi). A PEa is taken into account for each
image column in the Hough space. Each PE is addressed by the parameter a as
denoted by Fig. 6.3. Each edge point (xi,yj) is delivered as input to the decision
circuit of the PEa, which computes in parallel the corresponding (r2−b2) + 2by1
values for each pair (b,r). Parallel search is computed for the (xi−a)

2 + yj
2 values for

all the decision circuits, and the accumulators are incremented where the circle
equation is verified. In this way the Hough space is computed and the circles are
detected in the final computing step by detecting for each PE the CAM words in the
accumulator for which the accumulator values are above a threshold value vthr.

6.2 Memory Implementation Using FPGA

Memories represent mandatory components in any digital signal processing system
used for local data storage. By local data storage one can understand buffers, stacks,
shift register, delay lines, waveform storage and generation, function tables or
program storage for embedded processors needed by the digital system in question
to function properly. The term memory actually is the shorthand for physical
memory, meaning any chip capable of holding data. There are various types of
memories, depending on their key design metrics such as memory density, access
time, power dissipation. Further on, a short memory classification is presented as a
general topic, whereas the available memories within an FPGA chip (i.e. distributed

y

x

PEa PEa+k

r
(x1,y1)

(1,1)

(b,c)

(b,r)
Decision

PE

(x1,y1)
IN

(r2-b2)+2b·y1 

Accum
voting

(a)
(b)

Fig. 6.3 Principle of the hardware implementation for the Hough transform based on CAM: left
processing elements PE are built for image lines, center CAM based element performs parallel
voting in the Hough Space which is stored in accumulators, right examples of curved oil slicks
(morphological thinning is to be applied for detection)
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memory and block RAM based memories) are detailed. Note that block RAMs are
intrinsic components of the FPGA chip, and they represent random access memory
blocks placed at the edge sides of the chip (see Chap. 1).

6.2.1 Memory Types

Considering the possibility to store data even after power removal, memories are
classified as volatile or non-volatile. The non-volatile ones retain their stored
information after the removal of power. The most common volatile and non-volatile
memories are random access memories (RAM) and read-only memories (ROM),
respectively. RAM memories are further on classified as static or dynamic. The
dynamic ones need periodic refresh but they are simpler and with higher density.
Their common characteristic is that memory locations can be read or written in a
random order. On the other hand, the ROM memories are another form of data
storage that cannot be easily altered or reprogrammed. There are three types of
ROM memories: programmable read only memories (PROM), erasable pro-
grammable read-only memory (EPROM) and electrically erasable programmable
read-only memory (EEPROM).

When considering FPGA-based memories employed in digital designs, there are
two types of FPGA components to be used in order to build memories: look-up
tables (LUT) and block RAMs (BRAM).

Distributed RAM memories can be built using LUTs. Two LUTs from an FPGA
configurable logic block (CLB) can make a 32 � 1 single port distributed RAM.
The memory type is called distributed due to the fact that CLB, and implicit LUTs
that are used for memory construction are spread all over the FPGA chip. The
distributed RAM size can be increased by cascading multiple LUTs [8]. As far as
for the read/write operations, the distributed RAM read is asynchronous, whereas
the write operation is synchronous. A synchronous read can be done using extra
flip-flops.

Block RAM memories are dedicated blocks of memories within the FPGA
chip. They represent the efficient memory implementation for the most memory
requirements. Synchronous write and read operations are performed.

6.2.2 Inferred and Instantiated Memories Using VHDL

Considering the VHDL code to be used for building memory blocks, there are two
methods for handling this: instantiation and inference.

The VHDL code synthesizer automatically configures the LUTs as function
generators or ROM memories when needed. Moreover, if small array of registers
are used within the design, the synthesizer configures LUTs as distributed RAM
memories for the registers implementation. In case the registers are of increased
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size, the synthesizer normally uses block RAMs instead of LUTs to implement the
registers functionality. This synthesizer automatic behavior is called inference. In
case the designer is not satisfied with the synthesizer way of inferring the logic
blocks, he has the option to override the logic blocks behavior by using constraints.
Another option is to instantiate library parts to force the digital logic to be created as
specified in library definition. This procedure of using library parts is called in-
stantiation [9]. Further on VHDL code examples are detailed for both inferred and
instantiated RAM memories.

Inferred distributed RAM

A 256 words distributed RAM memory is inferred by the following code
description. The we port indicates a read or write operation depending on the logic
value 0 or 1, respectively. The data_in indicates the word to be written in the RAM
at the addr address, whereas the data_out indicates the word read from the addr
address. Next the entity declaration is listed.

————————— Entity declaration———————————————————————————————————————————

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_unsigned.all;

entity inferdRAM is

generic (bits : integer : = 32;

addr_bits: integer: = 8);

port ( clk: in std_logic;

we: in std_logic;

addr: in std_logic_vector(addr_bits-1 downto 0);

data_in: in std_logic_vector(bits-1 downto 0);

data_out: out std_logic_vector(bits-1 downto 0));

end inferRAM;

———————— End of entity declaration——————————————————————————————————————

The behavioral description of the distributed RAM with asynchronous read is
listed next:

——————— Behavioral declaration of RAM———————————————————————————————————

architecture behavioral of inferdRAM is

type ram_type is array (2**addr_bits-1 downto 0) of std_logic_vec-

tor (bits-1 downto 0);

signal RAM : ram_type;

begin

process (clk)

begin

if (clk’event and clk = ‘1’) then
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if (we = ‘1’) then

RAM(conv_integer(unsigned(addr))) <= data_in;

end if;

end if;

end process;

data_out <= RAM(conv_integer(unsigned(addr)));

end behavioral;

———————— End of behavioral declaration——————————————————————————————————

Note the data_out assignment is performed outside the clk process, meaning an
asynchronous read is performed. Placing the data_out assignment inside the if
(clk’event and clk = ’1’) statement leads to a distributed RAM memory with fake
synchronous read. The inferred distributed RAM with synchronous read looks like
depicted in Fig. 6.4.

Inferred block RAM

In order to have a block RAM inferred to a VHDL memory description, the read
address must be registered on the RAM clock edge. The VHDL code example s
given next:
———————— Entity declaration————————————————————————————————————————————

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_unsigned.all;

entity inferBRAM is

generic (bits : integer : = 32;

addr_bits: integer: = 8);

port ( clk: in std_logic;

we: in std_logic;

addr: in std_logic_vector(addr_bits-1 downto 0);

data_in: in std_logic_vector(bits-1 downto 0);

data_out: out std_logic_vector(bits-1 downto 0));

end inferRAM;

———————— End of entity declaration——————————————————————————————————————

The presented entity declaration corresponds to a 256 � 32 bits word block
RAM memory. The we port indicates a read or write operation depending on the

Distributed 
RAM

D
data_outdata_in

addr

we

clk

Fig. 6.4 Distributed RAM
with synchronous read
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logic value 0 or 1, respectively. The data_in indicates the word to be written in the
RAM at the addr address, whereas the data_out indicates the word read from the
addr address. The following behavioral description assigns the read address on the
memory clock edge through the read_addr signal.

———————— Behavioral description of Block RAM————————————————————————————

architecture behavioral of inferdRAM is

type ram_type is array (2**addr_bits-1 downto 0) of std_logic_vec-

tor (bits-1 downto 0);

signal RAM : ram_type;

signal read_addr: std_logic_vector(addr_bits-1 downto 0);

begin

process (clk)

begin

if (clk’event and clk = ‘1’) then

if (we = ‘1’) then

RAM(conv_integer(unsigned(addr))) <= data_in;

end if;

read_addr <= addr;

end if;

end process;

data_out <= RAM(conv_integer(unsigned(read_addr)));

end behavioral;

———————— End of behavioral declaration——————————————————————————————————

Inferred ROM

An example of 8 � 16 ROM memory is given next. Note that memory initialization
is done trough constant declaration. The read operation is performed in a concurrent
manner (i.e. no clock signal involved) by the following code line:
data_out <= ROM(conv_integer(unsigned(addr)));.

————————— Entity declaration———————————————————————————————————————————

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

USE ieee.std_logic_unsigned.all;

entity inferROM is

generic (bits : integer : = 16

addr_bits: integer : = 3);

port ( addr: in std_logic_vector(addr_bits-1 downto 0);

data_out: out std_logic_vector(bits-1 downto 0));

end inferROM;

architecture behavioral of inferROM is
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type rom_type is array (2**addr_bits-1 downto 0) of std_logic_vec-

tor (bits-1 downto 0);

constant ROM: rom_type:=

(X“0000”,

X“1234”,

X“5678”,

X“9ABC”,

X“DEF0”,

X“EF00”,

X“F000”,

X“0000”);

begin

data_out <= ROM(conv_integer(unsigned(addr)));

end behavioral;

————————— End of behavioral declaration—————————————————————————————————

Instantiated block RAM
Further on an example for the instantiation of the RAMB16_S9 block RAM
memory is provided to underline how dedicated random access memory blocks
with synchronous write capability can be used [10]. The block RAM memory
configuration includes 2048 � 8 data cells, 2048 � 1 parity bits, 11 bits address
bus, 8 bits data bus and 1 bit parity bus. An overview of the component can be seen
in Fig. 6.5.

The functionality of the RAMB16_S9 is summarized as follows. The Low value
on the EN port means no data is written and the outputs (DO and DOP) retain the
last state. When EN is High and reset (SSR) is High, DO and DOP are set to RVAL.
When EN is High and WE is Low, the data stored in the RAM address ADDR is
read during the rising clock edge. When EN and WE are High, the data on the data
inputs (DI and DIP) is loaded into the word selected by the write address (ADDR)
during the rising clock edge and the data outputs (DO and DOP) reflect the
addressed word.

The VHDL code for RAMB16_S9 memory instantiated is given next, whereas
the component attributes are also underlined.

RAMB16_
S9

WE

EN

SSR

CLK

ADDR [10:0]

DI [7:0]

DIP [0:0]

DOP [0:0]

DO [7:0]

Fig. 6.5 Block RAM
component RAMB16_S9
configuration (Spartan 3
FPGA)
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—————— instantiation of an RAMB16_S9 BRAM memory————————————————————————

RAMB16_S9_inst: RAMB16_S9

generic map (

INIT => X“000”,

SRVAL => X“000”,

WRITE_MODE => “WRITE_FIRST”,

INIT_00 =>

X“0000000000000000000000000000000000000000000000000000000000000000”,

INIT_01 =>

X“0000000000000000000000000000000000000000000000000000000000000000”,
…

INIT_3F =>

X“0000000000000000000000000000000000000000000000000000000000000000”,

INITP_00 =>

X“0000000000000000000000000000000000000000000000000000000000000000”,

INITP_07 =>

X“0000000000000000000000000000000000000000000000000000000000000000”)

port map (

DO => DO, -- 8-bit Data Output

DOP => DOP, -- 1-bit parity Output

ADDR => ADDR, -- 11-bit Address Input

CLK => CLK, -- Clock

DI => DI, -- 8-bit Data Input

DIP => DIP, -- 1-bit parity Input

EN => EN, -- RAM Enable Input

SSR => SSR, -- Synchronous Set/Reset Input

WE => WE -- Write Enable Input);

———————— end of the RAMB16_S9 memory instantiation——————————————————————

In order to specify the parameters of the instantiated memory, the following
attributes are availabele for the instantiation: INIT, INIT_00 to INIT_3F, INITP_00
to INITP_07, SRVAL and WRITE_MODE. The INIT attributes specify the initial
contents of the RAM memory, SRVAL allows the data output of the memory DO to
be initialized with either ‚0’ or ‚1’ logic value after a reset (SSR), whereas the
WRITE_MODE attribute specifies the behavior of the DO port upon a write
command (the common behaviour is to keep the previous value on the output port
and wont update the output port upon a write command).
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6.2.3 Memory Organization

We’ve seen so far that, internal FPGA memories can be built using LUT of the
configurable logic blocks or the specific memory blocks namely block RAMs.
Depending on the VHDL code, LUT are used for inferring either ROM, distributed
RAM or local register, whereas block RAMs may also used for inferring RAM
memory. Moreover, instantiation of different memory components can be per-
formed based on the library components used by the VHDL synthesizer (e.g. block
RAM instantiation). Each of these memories can be used either as shift registers,
circular registers, first-in first-out (FIFO) memories or stacks. For example, we can
add specific functionality to a register such that data is written into the first register
cell and consequently the other cell content is shifted to the right whereas the last
cell content is delivered as output data. In this manner the initial register becomes a
shift register. Adding specific functionalities to the memory blocks belongs to the
concept of memory organization. Classic approach to organize memory is to build
components such as shift registers, FIFO memories or even content addressable
memories. The description and code example for shift registers and FIFO memories
are given within current section. For the CAM memory, employed for Hough
transform implementation, a separate section is dedicated (Sect. 6.3). Within this
section, the main principle of CAM memories together with an example of VHDL
code for CAM memory implementation is provided.

Shift registers are memory units which store n words with synchronous access
for read and write operations. For each word input, another word is delivered as
output data. The logic block for a shift register can be depicted in Fig. 6.6.

The VHDL code for the n words shift register inference starts with the
shift_register entity, which includes a clock signal port clk, a data_in input port for
the 8 bits word and a data_out output port to return the output word. The archi-
tecture description for the shift_register entity is also detailed, where the input
output assignments are performed and also, the words are shifted within the register
according to the for loop statement. Note that all the assignment are performed on
clock signal edge (i.e. synchronous behavior).

———————— VHDL code for the shift register———————————————————————————————

library ieee;

use ieee.std_logic_1164.all;

entity shift_register is

generic( n : integer : = 16 );

n words shift register
data_outdata_in

clk

Fig. 6.6 Shift register
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port ( data_in : in std_logic_vector (7 downto 0);

data_out : out std_logic_vector (7 downto 0);

clk : std_logic);

end entity shift_register;

architecture reg of shift_register is

type data_array is array

( 0 to n-1 ) of std_logic_vector (7 downto 0);

signal mem: data_array;

begin

process( clk )

begin

if (clk’event and clk = ‘1’) then

mem(0) <= data_in;

data_out <= mem(n-1);

for j in 1 to n-1 loop

mem(j) <= mem(j-1);

end loop;

end if;

end process;

end reg;

———————— end of the shift register description——————————————————————————

FIFO memories are memory units which store n words, having separated read
and write ports. Both synchronous and asynchronous read and write operation may
be performed. Their specific behavior is given by the full and empty flags which
specify if the memory is either full or empty. The VHDL code for the n words FIFO
memory inference starts with the FIFO_mem entity, which includes a clock signal
port clk, a data_in input port, a data_out output port, read and write input ports to
specify the memory operation to be performed and also the two output ports for the
empty and full flags.

————————— VHDL code for the FIFO memory—————————————————————————————————

library ieee;

use ieee.std_logic_1164.all;

entity FIFO_mem is

generic( n : integer : = 16);

port( data_in : in std_logc_vector (7 downto 0);

data_out: out std_logc_vector (7 downto 0);

clk, read, write, reset : std_logic;

full, empty : out std_logic);

end entity FIFO_mem;
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architecture fifo of FIFO_mem is

subtype index is natural range 0 to n-1;

type data_array is array( 0 to n-1 ) of std_logc_vector (7 downto 0);

signal mem: data_array;

signal idx : index;

begin

process(clk)

begin

if reset = ‘1’ then

idx <= 0;

elsif clk’event and clk = ‘1’ then

if read = ‘1’ then

if (idx /= 0 ) then

data_out <= mem (idx);

empty <= ‘0;’

idx <= idx - 1;

end if;

end if;

if write = ‘1’ then

if ( read_idx < n-1 ) then

data_out <= mem(idx);

empty <= ‘0;’

full <= ‘0’;

idx <= idx + 1;

end if;

end if;

if ( idx = 0 ) then

empty <= ‘1;’

end if;

if ( idx = n-1 ) then

full <= ‘1;’

end if;

end if;

end process;

end fifo;

———————— end of the FIFO memory description—————————————————————————————

Concerning the VHDL code description for the FIFO memory, an asynchronous
reset initializes the FIFO index idx with zero. The idx signal specifies the curent
position from the FIFI where the read and write operation are performed. All the
other assignments of the FIFO logic block are performed on clock event. Thus, in
case the fifo is not empty, read_idx < n−1, a write operation can be done, if a ‘1’
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logic is present at the write input port; the index idx is incremented. A read
operation is performed if a ‘1’ logic is present at the read input port; the index idx is
decreased. Moreover, the flags empty and full are assigned with ‘1’ logic value, if
the memory is empty or full. In all other cases the flags are assigned with ‘0’.

6.3 CAM Memory Implementation Using VHDL

In order to find a given word w within n words depth ordinary memory, O(n)
computational steps are needed. For an efficient search of the word w, specific
search procedures such as binary trees can be employed, reducing the order of
growth for the computational complexity to O(log n). A more efficient approach is
to use CAM memories, for which each memory location is searched in parallel.
Thus a search key (i.e. one word of data) is delivered as input to the CAM memory
which returns whether or not a match occurred and also the index of the matched
word within the memory (i.e. the memory address of the match). This is performed
within a single computational step. The main disadvantage is that such memory is
expensive to implement in terms of hardware usage. A number of n comparators are
needed for the implementation, n representing the memory depth.

The following VHDL code corresponds to an inferred CAM memory. The
memory depth is of size n. The CAM word size is 8 bits length. The input ports key,
search and reset are used as follows: the ‘0’ or ‘1’ values on the search input port
correspond to write or match operation for the CAM memory. Thus, while the
CAM is not full and if search is ‘0’ then write operations are performed in the
CAM. In case search is ‘1’, then the key input is compared with the whole CAM
content, and if a match is found, the memory returns ‘1’ on found output port.

—————————— VHDL code for the CAM memory—————————————————————————————————

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity cam is

generic( n : positive : = 8 );

port( key : in std_logic_vector (7 downto 0);

found : out std_logic;

search : in std_logic;

full : out std_logic;

reset : in std_logic;

clk : in std_logic);

end entity cam;
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The behavioral description of the CAM memory is described in the next VHDL
code section. The variable match_array is used to determine if a match between the
key and CAM content exists on each CAM memory location. Consequently, the
match_array contains n logic values which represent if a match is found at the
memory location i, with i from 0 to n. Finally, an OR logic between all
match_array values determines if the key is founded within the CAM memory
content.

An asynchronous reset initializes the full flag with 0 and also the write_addr to
0. In case search input is ‘0’ a write operation is performed at write_addr memory
location and also the write_addr is incremented for the next write operation. In case
search input is ‘1’, the key input is looked for in the CAM memory content. The
found output is assigned with ‘0’ or ‘1’ whether a match is found or not.

architecture cam_memory a of cam is

type data_array is array(0 to n-1) of std_logic_vector (7 downto 0);

type bool_array is array( 0 to n-1 ) of boolean;

signal mem: data_array;

signal write_addr : natural;

begin

process( clk, reset )

variable match : boolean;

variable match_array: bool_array;

begin

if reset = ‘1’ then

write_addr <= 0;

full <= ‘0’;

elsif clk’event and clk = ‘1’ then

if search = ‘1’ then -- search mode

for j in data_array’range loop

match_array (j) : = (mem(j) = key);

end loop;

match : = match_array(0) or match_array(1) or

match_array(2) or match_array(3) or match_array(4) or

match_array(5) or match_array(6) or match_array(7);

if match then found <= ‘1’;

else found <= ‘0’;

end if;

else -- add a new entry

if write_addr = data_array’high + 1 then

full <= ‘1’;

else

mem( write_addr ) <= key;

write_addr <= write_addr + 1;

end if;

end if;
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end if;

end process;

end cam_memory;

————————— end of VHDL code for the CAM memory————————————————————————————

Further on, a test-bench for testing the CAM memory functionality is provided
together with the simulation results (Fig. 6.5). The test_cam is the entity name used
for testing. Inside the test_cam architecture the cam component is defined.
Moreover, key, search, reset, clk, found and full signals are defined in order to
provide inputs to the cam entity under test and to read the outputs.

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity test_cam is

end test_cam;

architecture behavior of test_cam is

component cam

port(

key : in std_logic_vector(7 downto 0);

found : out std_logic;

search : in std_logic;

full : out std_logic;

reset : in std_logic;

clk : in std_logic

);

end component;

signal key : std_logic_vector(7 downto 0) : = (others => ‘0’);

signal search : std_logic : = ‘0’;

signal reset : std_logic : = ‘0’;

signal clk : std_logic : = ‘0’;

signal found : std_logic;

signal full : std_logic;

constant clk_period : time : = 10 ns;

Within the test-bench architecture, the CAM memory is instantiated and also
inputs are assigned; the outputs are monitored using the simulation results provided
in Fig. 6.7. Thus, a reset is applied on the proposed CAM memory, followed by
memory write operations until the CAM memory is full (the full state is signalized
at the full output port). The proposed test-bench architectures writes 8 bits integer
values from 1 to 8 in the CAM memory. Once we have a full CAM memory,
various keys are looked up. The output found signalizes if a match of the input key
(8 bits input) exists within the memory. In our case the memory content is
initialized with 8 bits integer values from 1 to 8. Consequently, the memory returns
a match was found in case the key delivered as input is either 4 or 1.
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begin

uut: cam port map (

key => key,

found => found,

search => search,

full => full,

reset => reset,

clk => clk

);

clk_process :process

variable depth: integer: = 8;

begin

clk <= ‘0’;

wait for clk_period/2;

clk <= ‘1’;

wait for clk_period/2;

end process;

stim_proc: process

begin

key <=x“00”;

reset <= ‘0’;

wait for 100 ns;

reset <= ‘1’;

wait for 100 ns;

reset <= ‘0’;

search <=‘0’;

for depth in 1 to 8 loop

key <=std_logic_vector(to_unsigned(depth,8));

wait for clk_period;

end loop;

wait for clk_period*3;

reset

memory write

match match

Fig. 6.7 Simulation results considering the proposed CAM memory implementation and the
detailed test-bench architecture
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search <=‘1’;

key <= x“04”;

wait;

end process;

end;

6.4 Conclusions

The main benefit of using CAM memories is that they offer efficient search pos-
sibility by delivering the address for a specific memory content delivered as input
data. The main disadvantage is the increased hardware usage for this type of
memories. Consequently, in case of search procedure within the image space, an
increased size image leads to increased CAM memory depth for efficient search
algorithms implementation. Nevertheless, spatial image partitioning strategies such
as Voronoi diagrams may be employed in order to reduce the image size and also
the CAM memory depth. The proposed approach makes use of the CAM memories
to extract circular shape from images. Future work aims to extend CAM based
search for various type of image features such as elliptical shape or parameterized
curves.
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